TauFactor: An open-source application for calculating tortuosity factors from tomographic data

被引:280
作者
Cooper S.J. [1 ]
Bertei A. [1 ]
Shearing P.R. [2 ]
Kilner J.A. [3 ]
Brandon N.P. [1 ]
机构
[1] Electrochemical Science and Engineering, Earth Science and Engineering Department, Imperial College London, South Kensington, London
[2] Electrochemical Innovation Lab, Department of Chemical Engineering, UCL, London
[3] Electroceramics Materials Department, Imperial College London, London
来源
Cooper, S.J. (sjc08@ic.ac.uk) | 1600年 / Elsevier B.V., Netherlands卷 / 05期
基金
欧盟地平线“2020”;
关键词
Diffusion; Microstructure; Tomography; Tortuosity factor;
D O I
10.1016/j.softx.2016.09.002
中图分类号
学科分类号
摘要
TauFactor is a MatLab application for efficiently calculating the tortuosity factor, as well as volume fractions, surface areas and triple phase boundary densities, from image based microstructural data. The tortuosity factor quantifies the apparent decrease in diffusive transport resulting from convolutions of the flow paths through porous media. TauFactor was originally developed to improve the understanding of electrode microstructures for batteries and fuel cells; however, the tortuosity factor has been of interest to a wide range of disciplines for over a century, including geoscience, biology and optics. It is still common practice to use correlations, such as that developed by Bruggeman, to approximate the tortuosity factor, but in recent years the increasing availability of 3D imaging techniques has spurred interest in calculating this quantity more directly. This tool provides a fast and accurate computational platform applicable to the big datasets (>108 voxels) typical of modern tomography, without requiring high computational power. © 2016 The Author(s)
引用
收藏
页码:203 / 210
页数:7
相关论文
共 29 条
  • [1] Sahimi M., Flow and transport in porous media and fractured rock: from classical methods to modern approaches, Vol. 4606, (2011)
  • [2] Simpson R.L., Wiria F.E., Amis A.A., Chua C.K., Leong K.F., Hansen U.N., Chandrasekaran M., Lee M.W., Development of a 95/5 poly (l-lactide-co-glycolide)/hydroxylapatite and β-tricalcium phosphate scaffold as bone replacement material via selective laser sintering, J Biomed Mater Res Part B: Appl Biomater, 84, 1, pp. 17-25, (2008)
  • [3] Wakao N., Kagei S., Heat and mass transfer in packed beds, Vol. 1, (1982)
  • [4] Torquato S., Haslach H.W., Random heterogeneous materials: microstructure and macroscopic properties, Vol. 55, (2002)
  • [5] Crank J., The mathematics of diffusion, Vol. 2, (1975)
  • [6] Wiener O., Die Theorie Des Mischkorpers Fur Das Feld Der stationaren. Erste Abhandlung. Die Mittelwertsatze Fur Kraft, Polarisation Und Energie, Vol. 23, (1912)
  • [7] Shen L., Chen Z., Critical review of the impact of tortuosity on diffusion, Chem Engrg Sci, 62, 14, pp. 3748-3755, (2007)
  • [8] Bruggeman D.A.G., Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Ann Phys, 416, 7, (1935)
  • [9] Lorentz H.A., Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte, Wiedemanns Ann, 9, 4, pp. 641-665, (1880)
  • [10] Lorenz L., 1880 Ueber die Refractionsconstante, Ann Phys, 247, 9, pp. 1-35, (2005)