Positive solutions of the Robin problem for semi-linear elliptic equations on annuli

被引:0
作者
Department of Applied Mathematics, Hunan University, Changsha, Hunan 410082, China [1 ]
不详 [2 ]
机构
[1] Department of Applied Mathematics, Hunan University, Changsha
[2] Department of Mathematics, Hunan Normal University, Changsha
来源
Att Aca Naz Lincei Cl Sci Fis Mat Nat Rend Lincei Mat Appl | 2008年 / 3卷 / 175-188期
关键词
Positive solutions; Robin problem; Semilinear elliptic equations;
D O I
10.4171/RLM/516
中图分类号
学科分类号
摘要
Let n ≥ 3 and ωR = {x ε Rn; R < |x| < 1}. We consider the following Robin problem: (EQUATION PRESANT) where β is a positive parameter and v is the unit outward vector normal to ∂ωR. Under the assumptions (F1)-(F5) in the introduction, we prove that the above problem has at most one solution when β is small enough. In addition to (F1)-(F5), if (A1) in the introduction is satisfied, then the above problem has at least k nonradial solutions when β is large enough.
引用
收藏
页码:175 / 188
页数:13
相关论文
共 19 条
  • [1] Ambrosetti A., Rabinowitz P., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, pp. 349-381, (1973)
  • [2] Berestycki H., Nirenberg L., On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat., 22, pp. 1-37, (1991)
  • [3] Bossel M.H., Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l'inégalité de Cheeger, C. R. Acad. Sci. Paris Sér. I Math., 302, pp. 47-50, (1986)
  • [4] Brezis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical sobolev exponents, Comm. Pure Appl. Math., 34, pp. 437-477, (1983)
  • [5] Daners D., A Faber-Krahn inequality for Robin problems in any space dimension, Mathematische Annalen, 335, 4, pp. 767-785, (2006)
  • [6] Gidas B., Spruck J., A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6, pp. 883-891, (1981)
  • [7] Giorgi T., Smits R.G., Monotonicity results for the principal eigenvalue of the generalized Robin problem, Illinois Journal of Mathematics, 49, 4, pp. 1133-1143, (2005)
  • [8] Gu Y.G., Liu T., A priori estimate and existence of positive solutions of semilinear elliptic equations with the third boundary value problem, J. Systems Sci. Complexity, 14, pp. 389-398, (2001)
  • [9] Li P., Yau S.T., On the schrödinger equation and the eigenvalue problem, Comm. Math. Phys., 88, pp. 309-318, (1983)
  • [10] Lin S.S., Existence of many positive nonradial solutions for nonlinear elliptic equations on an annulus, J. Differential Equations, 103, pp. 338-349, (1993)