Relativistic Electrons from Vacuum Laser Acceleration Using Tightly Focused Radially Polarized Beams

被引:5
作者
Powell, Jeffrey [1 ]
Jolly, Spencer W. [2 ]
Vallieres, Simon [1 ]
Fillion-Gourdeau, Francois [1 ,3 ]
Payeur, Stephane [1 ]
Fourmaux, Sylvain [1 ]
Lytova, Marianna [1 ]
Piche, Michel [4 ]
Ibrahim, Heide [1 ]
Maclean, Steve [1 ,3 ]
Legare, Francois [1 ]
机构
[1] INRS, Adv Laser Light Source ALLS, EMT, 1650 Blvd Lionel Boulet, Varennes, PQ J3X 1P7, Canada
[2] Univ Libre Bruxelles, Serv OPERA Photon, Brussels, Belgium
[3] Infin Potential Labs, Waterloo, ON N2L 0A9, Canada
[4] Univ Laval, Ctr Opt Photon & Laser, Quebec City, PQ G1V 0A6, Canada
基金
加拿大创新基金会; 欧盟地平线“2020”; 加拿大自然科学与工程研究理事会;
关键词
FIELD-IONIZATION RATES; PONDEROMOTIVE ACCELERATION; DRIVEN; GENERATION; CYCLE; ULTRASHORT; PULSES;
D O I
10.1103/PhysRevLett.133.155001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generate a tabletop pulsed relativistic electron beam at 100 Hz repetition rate from vacuum laser acceleration by tightly focusing a radially polarized beam into a low-density gas. We demonstrate that strong longitudinal electric fields at the focus can accelerate electrons up to 1.43 MeV by using only 98 GW of peak laser power. The electron energy is measured as a function of laser intensity and gas species, revealing a strong dependence on the atomic ionization dynamics. These experimental results are supported by numerical simulations of particle dynamics in a tightly focused configuration that take ionization into consideration. For the range of intensities considered, it is demonstrated that atoms with higher atomic numbers like krypton can favorably inject electrons at the peak of the laser field, resulting in higher energies and an efficient acceleration mechanism that reaches a significant fraction ( 14%) of the theoretical energy gain limit.
引用
收藏
页数:9
相关论文
共 74 条
  • [21] Physics of laser-driven plasma-based electron accelerators
    Esarey, E.
    Schroeder, C. B.
    Leemans, W. P.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (03) : 1229 - 1285
  • [22] LASER ACCELERATION OF ELECTRONS IN VACUUM
    ESAREY, E
    SPRANGLE, P
    KRALL, J
    [J]. PHYSICAL REVIEW E, 1995, 52 (05) : 5443 - 5453
  • [23] A laser-plasma accelerator producing monoenergetic electron beams
    Faure, J
    Glinec, Y
    Pukhov, A
    Kiselev, S
    Gordienko, S
    Lefebvre, E
    Rousseau, JP
    Burgy, F
    Malka, V
    [J]. NATURE, 2004, 431 (7008) : 541 - 544
  • [24] Ultrafast electron diffraction: Visualizing dynamic states of matter
    Filippetto, D.
    Musumeci, P.
    Li, R. K.
    Siwick, B. J.
    Otto, M. R.
    Centurion, M.
    Nunes, J. P. F.
    [J]. REVIEWS OF MODERN PHYSICS, 2022, 94 (04)
  • [25] Direct-field electron acceleration with ultrafast radially polarized laser beams: scaling laws and optimization
    Fortin, Pierre-Louis
    Piche, Michel
    Varin, Charles
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2010, 43 (02)
  • [26] Gaida C., 2021, Emerging Laser Technologies for High-Power and Ultrafast Science
  • [27] Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging
    Golovin, G.
    Banerjee, S.
    Liu, C.
    Chen, S.
    Zhang, J.
    Zhao, B.
    Zhang, P.
    Veale, M.
    Wilson, M.
    Seller, P.
    Umstadter, D.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [28] Guénot D, 2017, NAT PHOTONICS, V11, P293, DOI [10.1038/nphoton.2017.46, 10.1038/NPHOTON.2017.46]
  • [29] NONLINEAR PONDEROMOTIVE SCATTERING OF RELATIVISTIC ELECTRONS BY AN INTENSE LASER FIELD AT FOCUS
    HARTEMANN, FV
    FOCHS, SN
    LESAGE, GP
    LUHMANN, NC
    WOODWORTH, JG
    PERRY, MD
    CHEN, YJ
    KERMAN, AK
    [J]. PHYSICAL REVIEW E, 1995, 51 (05): : 4833 - 4843
  • [30] Revisiting Experimental Signatures of the Ponderomotive Force
    Hegelich, Bjorn Manuel
    Labun, Lance
    Labun, Ou Z.
    [J]. PHOTONICS, 2023, 10 (02)