Relativistic Electrons from Vacuum Laser Acceleration Using Tightly Focused Radially Polarized Beams

被引:5
作者
Powell, Jeffrey [1 ]
Jolly, Spencer W. [2 ]
Vallieres, Simon [1 ]
Fillion-Gourdeau, Francois [1 ,3 ]
Payeur, Stephane [1 ]
Fourmaux, Sylvain [1 ]
Lytova, Marianna [1 ]
Piche, Michel [4 ]
Ibrahim, Heide [1 ]
Maclean, Steve [1 ,3 ]
Legare, Francois [1 ]
机构
[1] INRS, Adv Laser Light Source ALLS, EMT, 1650 Blvd Lionel Boulet, Varennes, PQ J3X 1P7, Canada
[2] Univ Libre Bruxelles, Serv OPERA Photon, Brussels, Belgium
[3] Infin Potential Labs, Waterloo, ON N2L 0A9, Canada
[4] Univ Laval, Ctr Opt Photon & Laser, Quebec City, PQ G1V 0A6, Canada
基金
加拿大创新基金会; 欧盟地平线“2020”; 加拿大自然科学与工程研究理事会;
关键词
FIELD-IONIZATION RATES; PONDEROMOTIVE ACCELERATION; DRIVEN; GENERATION; CYCLE; ULTRASHORT; PULSES;
D O I
10.1103/PhysRevLett.133.155001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generate a tabletop pulsed relativistic electron beam at 100 Hz repetition rate from vacuum laser acceleration by tightly focusing a radially polarized beam into a low-density gas. We demonstrate that strong longitudinal electric fields at the focus can accelerate electrons up to 1.43 MeV by using only 98 GW of peak laser power. The electron energy is measured as a function of laser intensity and gas species, revealing a strong dependence on the atomic ionization dynamics. These experimental results are supported by numerical simulations of particle dynamics in a tightly focused configuration that take ionization into consideration. For the range of intensities considered, it is demonstrated that atoms with higher atomic numbers like krypton can favorably inject electrons at the peak of the laser field, resulting in higher energies and an efficient acceleration mechanism that reaches a significant fraction ( 14%) of the theoretical energy gain limit.
引用
收藏
页数:9
相关论文
共 74 条
  • [1] Ammosov M. V., 1986, Soviet Physics - JETP, V64, P1191
  • [2] [Anonymous], PhysRevLett, DOI [10.1103/PhysRevLett.133.155001, DOI 10.1103/PHYSREVLETT.133.155001]
  • [3] Nonparaxial TM and TE beams in free space
    April, Alexandre
    [J]. OPTICS LETTERS, 2008, 33 (14) : 1563 - 1565
  • [4] Ionization-induced laser-driven QED cascade in noble gases
    Artemenko, I. I.
    Kostyukov, I. Yu.
    [J]. PHYSICAL REVIEW A, 2017, 96 (03)
  • [5] Exact field ionization rates in the barrier-suppression regime from numerical time-dependent Schrodinger-equation calculations
    Bauer, D
    Mulser, P
    [J]. PHYSICAL REVIEW A, 1999, 59 (01): : 569 - 577
  • [6] Electron acceleration by subcycle pulsed focused vector beams
    Cai, Xun-ming
    Zhao, Jing-yun
    Lin, Qiang
    Luo, Jiao-lian
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2016, 33 (02) : 158 - 164
  • [7] Electron acceleration driven by sub-cycle and single-cycle focused optical pulse with radially polarized electromagnetic field
    Cai, Xunming
    Zhao, Jingyun
    Lin, Qiang
    Tong, Hong
    Liu, Jiangtao
    [J]. OPTICS EXPRESS, 2018, 26 (23): : 30030 - 30041
  • [8] Direct longitudinal laser acceleration of electrons in free space
    Carbajo, Sergio
    Nanni, Emilio A.
    Wong, Liang Jie
    Moriena, Gustavo
    Keathley, Phillip D.
    Laurent, Guillaume
    Miller, R. J. Dwayne
    Kaertner, Franz X.
    [J]. PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2016, 19 (02):
  • [9] Efficient generation of ultra-intense few-cycle radially polarized laser pulses
    Carbajo, Sergio
    Granados, Eduardo
    Schimpf, Damian
    Sell, Alexander
    Hong, Kyung-Han
    Moses, Jeffrey
    Kaertner, Franz X.
    [J]. OPTICS LETTERS, 2014, 39 (08) : 2487 - 2490
  • [10] Sub-cycle dynamics in relativistic nanoplasma acceleration
    Cardenas, D. E.
    Ostermayr, T. M.
    Di Lucchio, L.
    Hofmann, L.
    Kling, M. F.
    Gibbon, P.
    Schreiber, J.
    Veisz, L.
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)