Gmd: Gaussian mixture descriptor for pair matching of 3D fragments

被引:0
作者
Xiong, Meijun [1 ]
Shi, Zhenguo [1 ]
Zhou, Xinyu [1 ]
Zhang, Yuhe [1 ]
Zhang, Shunli [1 ]
机构
[1] Northwest Univ, Sch Informat Sci & Technol, Xuefu Rd 1, Xian 710127, Peoples R China
关键词
Automatic reassembly; Reconstruction; GMM; Point cloud; FRACTURED OBJECTS; SURFACE;
D O I
10.1007/s00530-024-01519-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the automatic reassembly of fragments acquired using laser scanners to reconstruct objects, a crucial step is the matching of fractured surfaces. In this paper, we propose a novel local descriptor that uses the Gaussian Mixture Model (GMM) to fit the distribution of points, allowing for the description and matching of fractured surfaces of fragments. Our method involves dividing a local surface patch into concave and convex regions for estimating the k value of GMM. Then the final Gaussian Mixture Descriptor (GMD) of the fractured surface is formed by merging the regional GMDs. To measure the similarities between GMDs for determining adjacent fragments, we employ the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} distance and align the fragments using Random Sample Consensus (RANSAC) and Iterative Closest Point (ICP). The extensive experiments on real-scanned public datasets and Terracotta datasets demonstrate the effectiveness of our approach; furthermore, the comparisons with several existing methods also validate the advantage of the proposed method.
引用
收藏
页数:13
相关论文
共 42 条
[1]   Content-based retrieval of 3-D objects using Spin Image Signatures [J].
Assfalg, Juergen ;
Bertini, Marco ;
Del Bimbo, Alberto ;
Pala, Pietro .
IEEE TRANSACTIONS ON MULTIMEDIA, 2007, 9 (03) :589-599
[2]   Automatic speaker verification from affective speech using Gaussian mixture model based estimation of neutral speech characteristics [J].
Avila, Anderson R. ;
O'Shaughnessy, Douglas ;
Falk, Tiago H. .
SPEECH COMMUNICATION, 2021, 132 :21-31
[3]   A METHOD FOR REGISTRATION OF 3-D SHAPES [J].
BESL, PJ ;
MCKAY, ND .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (02) :239-256
[4]  
Cakir O ..., 2021, 2021 6 INT C COMP SC, P528, DOI [10.1109/UBMK52708.2021.9559005, DOI 10.1109/UBMK52708.2021.9559005]
[5]   Neural Shape Mating: Self-Supervised Object Assembly with Adversarial Shape Priors [J].
Chen, Yun-Chun ;
Li, Haoda ;
Turpin, Dylan ;
Jacobson, Alec ;
Garg, Animesh .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :12714-12723
[6]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[7]   A review of computer-based methods for classification and reconstruction of 3D high-density scanned archaeological pottery [J].
Di Angelo, Luca ;
Di Stefano, Paolo ;
Guardiani, Emanuele .
JOURNAL OF CULTURAL HERITAGE, 2022, 56 :10-24
[8]   Pairwise Alignment of Archaeological Fragments Through Morphological Characterization of Fracture Surfaces [J].
ElNaghy, Hanan ;
Dorst, Leo .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (09) :2184-2204
[9]  
Embretson SE., 2000, Item response theory, DOI DOI 10.4324/9781410605269
[10]   Convex hull indexed Gaussian mixture model (CH-GMM) for 3D point set registration [J].
Fan, Jingfan ;
Yang, Jian ;
Ai, Danni ;
Xia, Likun ;
Zhao, Yitian ;
Gao, Xing ;
Wang, Yongtian .
PATTERN RECOGNITION, 2016, 59 :126-141