Weakly coupled distributed calculation of Lyapunov exponents for non-linear dynamical systems

被引:1
作者
Hernández-Gómez J.J. [1 ]
Couder-Castañeda C. [1 ]
Herrera-Díaz I.E. [2 ]
Flores-Guzmán N. [3 ]
Gómez-Cruz E. [4 ]
机构
[1] Centro de Desarrollo Aeroespacial, Instituto Politécnico Nacional, Ciudad de Mexico
[2] Departamento de Ingeniería Agroindustrial, Universidad de Guanajuato, Campus Celaya-Salvatierra, Celaya, Guanajuato
[3] Centro de Investigación en Matemáticas, Guanajuato, Guanajuato
[4] Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México
关键词
Chaos theory; Distributed memory; Lyapunov exponents; MPI; Non-linear dynamical systems;
D O I
10.3390/a10040137
中图分类号
学科分类号
摘要
Numerical estimation of Lyapunov exponents in non-linear dynamical systems results in a very high computational cost. This is due to the large-scale computational cost of several Runge-Kutta problems that need to be calculated. In this work we introduce a parallel implementation based on MPI (Message Passing Interface) for the calculation of the Lyapunov exponents for a multidimensional dynamical system, considering a weakly coupled algorithm. Since we work on an academic high-latency cluster interconnected with a gigabit switch, the design has to be oriented to reduce the number of messages required. With the design introduced in this work, the computing time is drastically reduced, and the obtained performance leads to close to optimal speed-up ratios. The implemented parallelisation allows us to carry out many experiments for the calculation of several Lyapunov exponents with a low-cost cluster. The numerical experiments showed a high scalability, which we showed with up to 68 cores. © 2017 by the authors.
引用
收藏
相关论文
共 20 条
[1]  
Strogatz S., Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
[2]  
Studies in Nonlinearity, (2014)
[3]  
Lyapunov A.M., The General Problem of the Stability of Motion, (1892)
[4]  
Benettin G., Galgani L., Strelcyn J.M., Kolmogorov entropy and numerical experiments, Phys. Rev. A, 14, (1976)
[5]  
Contopoulos G., Galgani L., Giorgilli A., On the number of isolating integrals in Hamiltonian systems, Phys. Rev. A, 18, (1978)
[6]  
Sato S., Sano M., Sawada Y., Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems, Prog. Theor. Phys, 77, pp. 1-5, (1987)
[7]  
Kantz H., A robust method to estimate the maximal Lyapunov exponent of a time series, Phys. Lett. A, 185, pp. 77-87, (1994)
[8]  
Kuznetsov N., Alexeeva T., Leonov G., Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations, Nonlinear Dyn, 85, pp. 195-201, (2016)
[9]  
Wolf A., Swift J.B., Swinney H.L., Vastano J.A., Determining Lyapunov exponents from a time series, Phys. D Nonlinear Phenom, 16, pp. 285-317, (1985)
[10]  
Hernandez-Gomez J.J., Couder-Castaneda C., Gomez-Cruz E., Solis-Santome A., Ortiz-Aleman J.C., A simple experimental setup to approach chaos theory, Eur. J. Phys, (2017)