The debye temperature for hydrothermally grown ThO2 single crystals

被引:0
作者
Kelly, Tony D. [1 ]
Petrosky, James C. [1 ]
Mcclory, John W. [1 ]
Zens, Timothy [1 ]
Turner, David [1 ]
Mann, J. Matthew [2 ]
Kolis, Joseph W. [3 ]
Colón Santana, Juan A. [4 ]
Dowben, Peter A. [4 ]
机构
[1] Department of Engineering Physics, Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson AFB, 45433, OH
[2] Air Force Research Laboratory, Wright-Patterson AFB, 45433, OH
[3] Department of Chemistry, Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, 29634-0973, SC
[4] Dept. of Physics and Astronomy, Theodore Jorgensen Hall, University of Nebraska-Lincoln, 855 North 16thStreet, Lincoln, 68588-0299, NE
关键词
actinide; Debye temperature; photoemission;
D O I
10.1557/opl.2013.996
中图分类号
学科分类号
摘要
The electronic properties of ThO2 single crystals were studied using x-ray photoemission spectroscopy (XPS). The XPS results show that the Th4f core level is in an oxidation state that is consistent with that expected for Th in ThO2. The effective Debye temperature is estimated from the temperature dependent photoemission intensities of the Th 4f core level over the temperature range of 290 to 360 K. A Debye temperature of 468±32 K has been determined. © Materials Research Society 2013.
引用
收藏
相关论文
共 19 条
[1]  
Numakura M., Sato N., Bessada C., Okamoto Y., Akatsuka H., Nezu A., Shimohara Y., Tajima K., Kawano H., Nakahagi T., Matsuura H., Prog. in Nuc. Energy, 53, pp. 994-998, (2011)
[2]  
International Atomic Energy Agency, IAEA-TECDOC-1450, Vienna, Austria, (2005)
[3]  
Lagraffe D., Dowben P.A., Onellion M., J. Vac. Sci. Technol., A8, pp. 2738-2742, (1990)
[4]  
Wu N., Wisbey D., Komesu T., Yu Z.X., Manno M., Wang L., Leighton C., Dowben P.A., Physics Letters A, 372, pp. 2484-2489, (2008)
[5]  
McHale S.R., McClory J.W., Petrosky J.C., Wu J., Palai R., Dowben P.A., Ketsman I., Materials Letters, 65, pp. 1476-1478, (2011)
[6]  
Borca C.N., Xu B., Komesu T., Jeong H.-K., Liu M.T., Liou S.H., Dowben P.A., Surface Science, 512, pp. L346-L352, (2002)
[7]  
Hufner S., Photoelectron Spectroscopy Principles and Applications, (2003)
[8]  
Ali M., Nagels P., Phys. Status Solidi B, 21, pp. 113-116, (1967)
[9]  
Mann M., Thompson D., Serivalsatit K., Tritt T.M., Ballato J., Kolis J., Crystal Growth and Design, 10, pp. 2146-2151, (2010)
[10]  
Fuggle J.C., Burr A.F., Watson L.M., Fabian D.J., Lang W., J. Phys. F: Metals Physics, 4, (1974)