Prototypical Contrastive Domain Adaptation Network for Nonstationary EEG Classification

被引:0
|
作者
Li, Donglin [1 ]
Xu, Jiacan [2 ,3 ]
Zhang, Yuxian [1 ]
Ma, Dazhong [4 ]
Wang, Jianhui [4 ]
机构
[1] Shenyang Univ Technol, Coll Elect Engn, Shenyang 110000, Peoples R China
[2] Shenyang Jianzhu Univ, Sch Engn Training & Innovat, Shenyang 110168, Peoples R China
[3] Northern Heavy Ind Grp, Postdoctoral Stn, Shenyang 110141, Peoples R China
[4] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110000, Peoples R China
关键词
Electroencephalography; Covariance matrices; Brain modeling; Motors; Data models; Feature extraction; Adaptation models; Transfer learning; Training; Decoding; Contrastive learning; cross domain; domain adaptation; electroencephalography (EEG); motor imagery (MI); MOTOR IMAGERY; RECOGNITION;
D O I
10.1109/TIM.2024.3476618
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The identification of electroencephalography (EEG) signals' cross sessions and subjects remains challenging due to the variability of data caused by extraneous factors and individual differences in EEG signals. Existing domain-adaptive transfer methods using cross-domain labeled samples for classification are too coarse and could lead to negative transfer problems. To solve this problem, we propose a prototypical contrastive domain adaptation (PCDA) network in this article. First, we align the data from different domains to reduce the data distribution differences for supporting the subsequent model construction. Then, a conditional domain adversarial network is used in the feature extraction stage to achieve domain alignment and learn deep feature representations. Second, we propose a scoring method to equivalently quantify the similarity of data from different domains using resting-state data and select similar source domain data to fine-tune the model. Finally, we propose a prototypical contrastive (PC) learning module. In-domain PC learning captures and compares the category-wise semantic structure of the data and the learned representations to enable the clustering of similar features. Cross-domain PC learning encodes and compares the semantic structure in shared embedding space to enable self-supervised feature alignment and reduce negative transfer. The experimental results show that the PCDA network achieves better results on the datasets of brain-computer interface (BCI) Competition IV II-a and II-b, and the ablation experiments validate the efficacy of the method.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Bootstrap contrastive domain adaptation
    Jia, Yan
    Cheng, Yuqing
    Qiao, Peng
    MEMETIC COMPUTING, 2024, 16 (03) : 415 - 427
  • [32] Cross-Task Cognitive Workload Recognition Based on EEG and Domain Adaptation
    Zhou, Yueying
    Xu, Ziming
    Niu, Yifan
    Wang, Pengpai
    Wen, Xuyun
    Wu, Xia
    Zhang, Daoqiang
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 : 50 - 60
  • [33] Contrastive Adversarial Domain Adaptation for Machine Remaining Useful Life Prediction
    Ragab, Mohamed
    Chen, Zhenghua
    Wu, Min
    Foo, Chuan Sheng
    Kwoh, Chee Keong
    Yan, Ruqiang
    Li, Xiaoli
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (08) : 5239 - 5249
  • [34] SigDA: A Superimposed Domain Adaptation Framework for Automatic Modulation Classification
    Wang, Shuang
    Xing, Hantong
    Wang, Chenxu
    Zhou, Huaji
    Hou, Biao
    Jiao, Licheng
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (10) : 13159 - 13172
  • [35] Cross-Domain Attention Network for Unsupervised Domain Adaptation Crowd Counting
    Zhang, Anran
    Xu, Jun
    Luo, Xiaoyan
    Cao, Xianbin
    Zhen, Xiantong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 6686 - 6699
  • [36] Multi-source EEG emotion recognition via dynamic contrastive domain adaptation
    Xiao, Yun
    Zhang, Yimeng
    Peng, Xiaopeng
    Han, Shuzheng
    Zheng, Xia
    Fang, Dingyi
    Chen, Xiaojiang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 102
  • [37] Multi-View Prototypical Transport for Unsupervised Domain Adaptation
    Lee, Sunhyeok
    Kim, Dae-Shik
    IEEE ACCESS, 2025, 13 : 8482 - 8494
  • [38] Confident Learning-Based Domain Adaptation for Hyperspectral Image Classification
    Fang, Zhuoqun
    Yang, Yuexin
    Li, Zhaokui
    Li, Wei
    Chen, Yushi
    Ma, Li
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [39] Generalized Domain Conditioned Adaptation Network
    Li, Shuang
    Xie, Binhui
    Lin, Qiuxia
    Liu, Chi Harold
    Huang, Gao
    Wang, Guoren
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (08) : 4093 - 4109
  • [40] Cross-Domain Automatic Modulation Classification: A Multimodal-Information-Based Progressive Unsupervised Domain Adaptation Network
    Deng, Wen
    Li, Si
    Wang, Xiang
    Huang, Zhitao
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 5544 - 5558