A Multi-Class Neural Network Model for Rapid Detection of IoT Botnet Attacks

被引:0
|
作者
Alzahrani, Haifaa [1 ]
Abulkhair, Maysoon [1 ]
Alkayal, Entisar [1 ]
机构
[1] King Abdulaziz Univ, Informat Technol Dept, Jeddah, Saudi Arabia
关键词
Internet of Things (IoT); IoT botnets; IoT security; intrusion detection system; deep learning; neural network; INTERNET; THINGS; DDOS;
D O I
10.14569/IJACSA.2020.0110783
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The tremendous number of Internet of Things (IoT) devices and their widespread use have made our lives considerably more manageable and safer. At the same time, however, the vulnerability of these innovations means that our day-to-day existence is surrounded by insecure devices, thereby facilitating ways for cybercriminals to launch various attacks by large-scale robot networks (botnets) through IoT. In consideration of these issues, we propose a neural network-based model to detect IoT botnet attacks. Furthermore, the model provides multi-classification, which is necessary for taking appropriate countermeasures to understand and stop the attacks. In addition, it is independent and does not require specific equipment or software to fetch the required features. According to the conducted experiments, the proposed model is accurate and achieves 99.99%, 99.04% as F1 score for two benchmark datasets in addition to fulfilling IoT constraints regarding complexity and speed. It is less complicated in terms of computations, and it provides real-time detection that outperformed the state-of-the-art, achieving a detection time ratio of 1:5 and a ratio of 1:8.
引用
收藏
页码:688 / 696
页数:9
相关论文
共 50 条
  • [41] Deep neural network for multi-class classification of medicinal plant leaves
    Tiwari, Vaibhav
    Joshi, Rakesh Chandra
    Dutta, Malay Kishore
    EXPERT SYSTEMS, 2022, 39 (08)
  • [42] DDoS Attacks Detection with Half Autoencoder-Stacked Deep Neural Network
    Benmohamed, Emna
    Thaljaoui, Adel
    El Khediri, Salim
    Aladhadh, Suliman
    Alohali, Mansor
    INTERNATIONAL JOURNAL OF COOPERATIVE INFORMATION SYSTEMS, 2024, 33 (03)
  • [43] Botnet Detection and Mitigation Model for IoT Networks Using Federated Learning
    Filho, Francisco Lopes de Caldas
    Soares, Samuel Carlos Meneses
    Oroski, Elder
    Albuquerque, Robson de Oliveira
    da Mata, Rafael Zerbini Alves
    de Mendonca, Fabio Lucio Lopes
    de Sousa Jr, Rafael Timoteo
    SENSORS, 2023, 23 (14)
  • [44] A hybrid deep learning model for multi-class DDoS detection in SDN networks
    Zaidoun, Ameur Salem
    Lachiri, Zied
    ANNALS OF TELECOMMUNICATIONS, 2025, : 459 - 472
  • [45] An Accurate Detection Approach for IoT Botnet Attacks Using Interpolation Reasoning Method
    Almseidin, Mohammad
    Alkasassbeh, Mouhammd
    INFORMATION, 2022, 13 (06)
  • [46] DeepSVM-A Novel Approach for Early Detection and Classification of IoT Botnet Attacks
    Antony, Veena
    Thangarasu, N.
    2024 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTING AND INFORMATICS, ICICI 2024, 2024, : 152 - 158
  • [47] An efficient deep recurrent neural network for detection of cyberattacks in realistic IoT environment
    Abbas, Sidra
    Alsubai, Shtwai
    Ojo, Stephen
    Sampedro, Gabriel Avelino
    Almadhor, Ahmad
    Hejaili, Abdullah Al
    Bouazzi, Imen
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (10) : 13557 - 13575
  • [48] Cascaded Multi-Class Network Intrusion Detection With Decision Tree and Self-attentive Model
    Lan, Yuchen
    Truong-Huu, Tram
    Wu, Jiyan
    Teo, Sin G.
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 586 - 592
  • [49] A Class-Specific Intrusion Detection Model: Hierarchical Multi-class IDS Model
    Sarıkaya A.
    Kılıç B.G.
    SN Computer Science, 2020, 1 (4)
  • [50] Detection of cyber attacks in IoT using tree-based ensemble and feedforward neural network
    Shorfuzzaman, Mohammad
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 2601 - 2606