Optimization of polytopic system eigenvalues by swarm of particles

被引:1
作者
Kabziński, Jacek [1 ]
Kacerka, Jaroslaw [1 ]
机构
[1] Institute of Automatic Control, Lodz University of Technology, Stefanowskiego 18/22, Lodz
来源
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | 2014年 / 8722卷
关键词
Constrained optimization; Eigenvalue optimization; Particle swam optimization; Polytopic systems;
D O I
10.1007/978-3-319-10554-3_17
中图分类号
学科分类号
摘要
A modified version of particle swarm optimization algorithm is proposed for minimization of maximal real part of a polytopic system eigenvalues. New initialization procedure and special projection operation are introduced to keep all particles working effectively inside a simplex of feasible positions. The algorithm is tested on several benchmarks and statistical evidences for its’ high efficiency are provided. © Springer International Publishing Switzerland 2014.
引用
收藏
页码:178 / 185
页数:7
相关论文
共 10 条
  • [1] Lewis A.S., The mathematics of eigenvalue optimization, Math. Program., Ser. B, 97, pp. 155-176, (2003)
  • [2] Chesi G., Measuring the Instability in Continuous-Time Linear Systems with Polytopic Uncertainty, 52nd IEEE Conference on Decision and Control, pp. 1131-1136, (2013)
  • [3] Apkarian P., Noll D., Prot O., Trust region spectral bundle method for nonconvex eigenvalue optimization, SIAM. J. Optim, 19, 1, pp. 281-306, (2009)
  • [4] Chen X., Qi H., Qi L., Teo K.L., Smooth convex approximation to the maximum eigenvalue function, Jour. of Global Optimization, 30, pp. 253-270, (2004)
  • [5] Blanco A.M., Bandoni J.A., Eigenvalue and Singular Value Optimization, ENIEF 2003 - XIII Congreso sobre Métodos Numéricos y sus Aplicaciones, pp. 1256-1272, (2003)
  • [6] Eberhart R.C., Kennedy J., A new optimizer using particle swarm theory, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39-43, (1995)
  • [7] Parsopoulos K., Vrachatis M.N., Particle swarm optimization and intelligence: advances and applications, (2009)
  • [8] Parsopoulos K.E., Vrahatis M.N., UPSO: A unified particle swarm optimization scheme, Proc. Int. Conf. Comput. Meth. Sci. Eng. (ICCMSE 2004), 1, pp. 868-873, (2004)
  • [9] Cao Y.J., Eigenvalue optimization problems via evolutionary programming, Electronics Letters, 33, 7, pp. 642-643, (1997)
  • [10] Kabzinski J., Swarm Capability of Finding Eigenvalues, AIMSA 2012. LNCS, 7557, pp. 172-177, (2012)