Comparative analysis of spectroradiometric and chemical methods for nutrient detection in black gram leaves

被引:2
作者
Mani, Balamurugan [1 ]
Kandasamy, Kalaiarasi [1 ]
Shanmugam, Jayalakshmi [2 ]
Dhairiyasamy, Ratchagaraja [3 ]
机构
[1] Saveetha Univ, Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Elect & Commun Engn, Chennai, Tamilnadu, India
[2] Anna Univ, Inst Remote Sensing, Chennai, India
[3] Aksum Univ, Coll Engn & Technol, Axum, Ethiopia
关键词
Nutrient deficiency; Vigna mungo; VNIR spectroradiometer; Spectral reflectance; Non-destructive testing; MOISTURE-CONTENT; DEFICIENCY; IDENTIFICATION;
D O I
10.1016/j.rineng.2024.103065
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study evaluated the nutrient content in Vigna mungo leaves using a visible near-infrared spectroradiometer (VNIR 650-900 nm) and compared it with traditional chemical analysis. Nutrient deficiencies were induced in a controlled environment, focusing on Nitrogen (N), Phosphorus (P), and Potassium (K). The VNIR spectroradiometer measured the spectral reflectance of the leaves at different intervals. Peak reflectance for N, P, and K deficiencies occurred at 716 nm, 737 nm, and 720 nm, respectively. A 30 % deficiency in N, P, and K resulted in reflectance values of 45 %, 42 %, and 41 %, respectively, while a 40 % deficiency increased these values to 48 %, 46 %, and 43 %. Results showed a strong correlation between nutrient deficiency and spectral reflectance, providing a quicker, more economical method than traditional chemical analysis. The study concludes that VNIR spectroradiometry is an effective tool for non-destructive, real-time assessment of nutrient status in Vigna mungo, which could lead to optimized fertilizer application and improved crop management.
引用
收藏
页数:10
相关论文
共 33 条
[1]   Calibrating lab and field reflectance spectra for nutrient estimation in potato plants using local support vector regression models [J].
Abukmeil, Reem ;
Al-Mallahi, Ahmad ;
Campelo, Felipe .
SMART AGRICULTURAL TECHNOLOGY, 2024, 8
[2]   Single bands leaf reflectance prediction based on fuel moisture content for forestry applications [J].
Andre Arevalo-Ramirez, Tito ;
Fuentes Castillo, Andres Hernan ;
Reszka Cabello, Pedro Sebastian ;
Auat Cheein, Fernando A. .
BIOSYSTEMS ENGINEERING, 2021, 202 :79-95
[3]   NIR associated to PLS and SVM for fast and non-destructive determination of C, N, P, and K contents in poultry litter [J].
Borsatti Bedin, Flavia Chiamulera ;
Faust, Mateus Vinicius ;
Guarneri, Giovanni Alfredo ;
Assmann, Tangriani Simioni ;
Batista Lafay, Cintia Boeira ;
Soares, Lisiane Fernandes ;
Victoria de Oliveira, Paulo Armando ;
dos Santos-Tonial, Larissa Macedo .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2021, 245
[4]   Critical review and recent advances of emerging real-time and non-destructive strategies for meat spoilage monitoring [J].
Chen, Jiaci ;
Zhang, Juan ;
Wang, Nan ;
Xiao, Bin ;
Sun, Xiaoyun ;
Li, Jiapeng ;
Zhong, Ke ;
Yang, Longrui ;
Pang, Xiangyi ;
Huang, Fengchun ;
Chen, Ailiang .
FOOD CHEMISTRY, 2024, 445
[5]   Comparative performance of four CNN-based deep learning variants in detecting Hispa pest, two fungal diseases, and NPK deficiency symptoms of rice (Oryza sativa) [J].
Dey, Biplob ;
Ul Haque, Mohammed Masum ;
Khatun, Rahela ;
Ahmed, Romel .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 202
[6]   Using EfficientNet and transfer learning for image-based diagnosis of nutrient deficiencies [J].
Espejo-Garcia, Borja ;
Malounas, Ioannis ;
Mylonas, Nikos ;
Kasimati, Aikaterini ;
Fountas, Spyros .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 196
[7]   Detection and classification of groundnut leaf nutrient level extraction in RGB images [J].
Janani, M. ;
Jebakumar, R. .
ADVANCES IN ENGINEERING SOFTWARE, 2023, 175
[8]   Mining sensitive hyperspectral feature to non-destructively monitor biomass and nitrogen accumulation status of tea plant throughout the whole year [J].
Jiang, Jie ;
Ji, Haotian ;
Yan, Yan ;
Zhao, Liyu ;
Pan, Rongyu ;
Liu, Xiaojun ;
Yin, Juan ;
Duan, Yu ;
Ma, Yuanchun ;
Zhu, Xujun ;
Fang, Wanping .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 225
[9]   Reflections of stress: Ozone damage in broadleaf saplings can be identified from hyperspectral leaf reflectance [J].
Jones, Anna Lee ;
Ormondroyd, Adam ;
Hayes, Felicity ;
Jeffers, Elizabeth S. .
ENVIRONMENTAL POLLUTION, 2024, 360
[10]   Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements [J].
Kalaji, Hazem M. ;
Oukarroum, Abdallah ;
Alexandrov, Vladimir ;
Kouzmanova, Margarita ;
Brestic, Marian ;
Zivcak, Marek ;
Samborska, Izabela A. ;
Cetner, Magdalena D. ;
Allakhverdiev, Suleyman I. ;
Goltsev, Vasilij .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2014, 81 :16-25