Chaining approach for 3-D object envelope construction

被引:0
|
作者
Lichioui, A. [1 ,2 ,3 ,4 ,5 ]
Bennouna, A. [1 ,6 ,7 ,8 ]
Guennoun, Z. [1 ,9 ,10 ,11 ]
Hlou, L. [1 ,12 ]
Roukhe, A. [1 ,13 ,14 ]
机构
[1] LEC, Ecole Mohammadia d'Ingénieurs, B.P 765 Avenue Ibn Sina, Agdal Rabat, Morocco
[2] Département de Physique, Faculté des Sciences, B.P. 133, Kenitra, Morocco
[3] L.E.T.I. Dept. de Physique, Faculté des Sciences, B.P. 4010, Beni M'hamed Meknes, Morocco
[4] IXPT Institute, Rabat, Morocco
[5] Electrical Department, EMI School of Engineering, Rabat, Morocco
[6] University of Cairo, Liege, United Kingdom
[7] University of Astron, United Kingdom
[8] University of BATH, United Kingdom
[9] Electronics Elec. Montefiore Inst., ULG, Liege, Belgium
[10] EMI School, Rasbat, Morocco
[11] Centre for Communication Research, Bristol University, United Kingdom
[12] Univ. Ibn Tofaïl Kénitra, Morocco
[13] Sidi Mohamed Ben Abdelah University, Fes, Morocco
[14] Department of Physics, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
来源
International Journal of Modelling and Simulation | 2000年 / 20卷 / 04期
关键词
Cameras - Computer aided design;
D O I
10.1080/02286203.2000.11442174
中图分类号
学科分类号
摘要
In this paper, a new method for three-dimensional object envelope construction is proposed using the chaining approach. The object is seen by three cameras placed on an orthonormal basis (OXYZ) axes. From these projections, respective contours are extracted and then transformed into a list of chains presenting contour pixels of each projection. These chains are restructured to be used for arbitrary object shape envelope construction. The constructed 3-D object can be viewed on the screen using perspective or parallel projections under arbitrary viewpoint angles θ and φ. A one-pixel precision is reached for recovered objects.
引用
收藏
页码:329 / 335
相关论文
共 50 条
  • [31] A framework for statistical 3-D object recognition
    Paulus, D
    Hornegger, J
    Niemann, H
    PATTERN RECOGNITION LETTERS, 1997, 18 (11-13) : 1153 - 1157
  • [32] Automatic CAD-based construction of hybrid models for 3-D object recognition and localization
    Ude, A
    INES'97 : 1997 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS, PROCEEDINGS, 1997, : 561 - 566
  • [33] 3-D OBJECT RECOGNITION BY GRAPH MATCHING
    LIU, YC
    MA, SD
    INTELLIGENT AUTONOMOUS SYSTEMS 2, VOLS 1 AND 2, 1989, : 918 - 921
  • [34] AUTOMATIC OBJECT SEGMENTATION WITH 3-D CAMERAS
    Liu, Haowei
    Philipose, Matthai
    Sun, Ming-Ting
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 569 - 572
  • [35] INTERPOLATION TECHNIQUES FOR 3-D OBJECT GENERATION
    GUJAR, UG
    BHAVSAR, VC
    DATAR, NN
    COMPUTERS & GRAPHICS, 1988, 12 (3-4) : 541 - 555
  • [36] CubeSLAM: Monocular 3-D Object SLAM
    Yang, Shichao
    Scherer, Sebastian
    IEEE TRANSACTIONS ON ROBOTICS, 2019, 35 (04) : 925 - 938
  • [37] Investigation of accuracy of 3-D representation of a 3-D object shape in the human visual system
    Krasilnikov, NN
    Mironenko, EP
    PERCEPTION, 2005, 34 : 113 - 113
  • [38] A Vehicle Trajectory Analysis Approach Based on the Rigid Constraints of Object in 3-D Space
    Wen Jiang
    Zhang Zhaoyang
    Song Huansheng
    Pang Fenglan
    PATTERN RECOGNITION (CCPR 2016), PT I, 2016, 662 : 42 - 52
  • [39] A NEURAL-NETWORK APPROACH TO CSG-BASED 3-D OBJECT RECOGNITION
    CHEN, TW
    LIN, WC
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (07) : 719 - 726
  • [40] A Bayesian approach to video object segmentation via merging 3-D watershed volumes
    Tsai, YP
    Lai, CC
    Hung, YP
    Shih, ZC
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2005, 15 (01) : 175 - 180