Broadcasting in Sierpinski gasket graphs

被引:0
|
作者
Shanthakumari, A. [1 ]
机构
[1] Department of Mathematics, M.O.P. Vaishnav College for Women (Autonomous), Chennai, India
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Broadcasting is a fundamental information dissemination problem in a connected graph, in which one vertex called the originator, disseminates one or more messages to all other vertices in the graph, k-broadcasting is a variant of broadcasting in which an informed vertex can disseminate message to at most k uninformed vertices in one unit of time. In general, solving the broadcast problem in an arbitrary graph is NP-complete. In this paper, we obtain the k-broadcast time of the Sierpinski gasket graphs for all k ≥ 1.
引用
收藏
页码:111 / 119
相关论文
共 50 条
  • [31] Orthogonal Polynomials on the Sierpinski Gasket
    Okoudjou, Kasso A.
    Strichartz, Robert S.
    Tuley, Elizabeth K.
    CONSTRUCTIVE APPROXIMATION, 2013, 37 (03) : 311 - 340
  • [32] Fractal functions on the Sierpinski Gasket
    Ri, SongIl
    CHAOS SOLITONS & FRACTALS, 2020, 138
  • [33] Spanning forests on the Sierpinski gasket
    Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan
    不详
    Discrete Mathematics and Theoretical Computer Science, 2008, 10 (02): : 55 - 76
  • [34] Hausdorff measure of Sierpinski gasket
    Zhou, ZL
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (10): : 1016 - 1021
  • [35] THE AVERAGE DISTANCE ON THE SIERPINSKI GASKET
    HINZ, AM
    SCHIEF, A
    PROBABILITY THEORY AND RELATED FIELDS, 1990, 87 (01) : 129 - 138
  • [36] Hamiltonian walks on the Sierpinski gasket
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (02)
  • [37] Energy and Laplacian on the Sierpinski gasket
    Teplyaev, A
    FRACTAL GEOMETRY AND APPLICATIONS: A JUBILEE OF BENOIT MANDELBROT - ANALYSIS, NUMBER THEORY, AND DYNAMICAL SYSTEMS, PT 1, 2004, 72 : 131 - 154
  • [38] AVERAGE GEODESIC DISTANCE OF SIERPINSKI GASKET AND SIERPINSKI NETWORKS
    Wang, Songjing
    Yu, Zhouyu
    Xi, Lifeng
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2017, 25 (05)
  • [39] Maximum density for the Sierpinski gasket
    Zhou, Ji
    Luo, Mao-Kang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (01) : 597 - 603
  • [40] Spanning Trees on the Sierpinski Gasket
    Shu-Chiuan Chang
    Lung-Chi Chen
    Wei-Shih Yang
    Journal of Statistical Physics, 2007, 126 : 649 - 667