Experimental Study on Cavitation of a Liquid Lithium Jet for International Fusion Materials Irradiation Facility

被引:3
作者
Kondo H. [1 ]
Kanemura T. [1 ,5 ]
Furukawa T. [2 ]
Hirakawa Y. [2 ]
Wakai E. [3 ]
Knaster J. [4 ]
机构
[1] National Institutes for Quantum and Radiological Science and Technology, 801-1 Mukoyama, Naka, Ibaraki
[2] Japan Atomic Energy Agency, 4002 Narita, Oarai, Ibaraki
[3] Japan Atomic Energy Agency, 765-1 Funaishikawa, Tokai, Ibaraki
[4] Project Team, IFMIF, EVEDA, 2-166 Omotedate, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori
[5] Michigan State University, East Lansing, MI
来源
Journal of Nuclear Engineering and Radiation Science | 2017年 / 3卷 / 04期
关键词
Acoustic emissions - Acoustic noise - Irradiation - Wavelet transforms - Cavitation - Acoustic emission testing - Acoustics - Lithium - Vacuum applications - Acoustic wave propagation;
D O I
10.1115/1.4036513
中图分类号
学科分类号
摘要
A liquid Li jet flowing at 15 m/s under a high vacuum of 103 Pa is intended to serve as a beam target (Li target) in the planned International Fusion Materials Irradiation Facility (IFMIF). The engineering validation and engineering design activities (EVEDA) for the IFMIF are being implemented under the broader approach (BA) agreement. As a major activity of the Li target facility, the EVEDA Li test loop (ELTL) was constructed by the Japan Atomic Energy Agency. A stable Li target under the IFMIF conditions (Li temperature: 523.15 K, velocity: 15 m/s, and vacuum pressure: 103 Pa) was demonstrated using ELTL. This study focuses on a cavitationlike acoustic noise detected in a downstream conduit where the Li target flowed under vacuum conditions. This noise was investigated using acoustic-emission (AE) sensors installed at eight locations via acoustic wave guides. The sound intensity of the acoustic noise was examined against the cavitation number of the Li target. In addition, two types of frequency analysis, namely, fast Fourier transform (FFT) and continuous wavelet transform (CWT), were performed to characterize the acoustic noise. Owing to the acoustic noise’s intermittency, high frequency, and the dependence on cavitation number, we conclude that this acoustic noise is generated when cavitation bubbles collapse and/or the structural material of the pipe is cracked because of the collapse of cavitation bubbles (cavitation pitting). The location of the cavitation was fundamental for presuming the mechanism. In this study, the propagation of acoustic waves among AE sensors placed at three locations was used to localize the cavitation and a method to determine the location of cavitation was formulated. As a result, we found that cavitation occurred only in a narrow area where the Li target impinged on the downstream conduit; therefore, we concluded that this cavitation was induced by the impingement. The design of the downstream conduit of the IFMIF Li target facility should be tackled in future based on information obtained in this study. Copyright VC 2017 by ASME
引用
收藏
相关论文
共 17 条
[1]  
Knaster J., Arbeiter F., Cara P., Favuzza P., Furukawa T., Groeschel F., Hei-Dinger R., Ibarra A., Matsumoto H., Mosnier A., Serizawa H., Sugimoto M., Suzuki H., Wakai E., IFMIF: Overview of the Validation Activities, Nucl. Fusion, 53, 11, (2013)
[2]  
Kondo H., Furukawa T., Hirakawa Y., Iuchi H., Kanemura T., Ida M., Watanabe K., Horiike H., Yamaoka N., Matsushita I., Wakai E., Nakamura K., Completion of IFMIF/EVEDA Lithium Test Loop Construction, Fusion Eng. Des., 87, 5-6, pp. 418-422, (2012)
[3]  
Kondo H., Kanemura T., Furukawa T., Hirakawa Y., Groeschel F., Wakai E., The Start-Up and Observation of the Li Target in the EVEDA Li Test Loop, Fusion Eng. Des., 89, 7-8, pp. 1688-1693, (2014)
[4]  
Kondo H., Kanemura T., Furukawa T., Hirakawa Y., Wakai E., Groeschel F., Nitti F., Knaster J., Validation of IFMIF Liquid Li Target for IFMIF/EVEDA Project, Fusion Eng. Des., 96-97, pp. 117-122, (2015)
[5]  
Kanemura T., Kondo H., Hoashi E., Yoshihashi-Suzuki S., Yamaoka N., Horiike H., Furukawa T., Hirakawa Y., Wakai E., Evaluation of Applicability of Laser-Based Distance Meter to Measure Li-Jet Thickness for IFMIF/EVEDA Project, Fusion Eng. Des., 89, 7-8, pp. 1642-1647, (2014)
[6]  
Kanemura T., Kondo H., Furukawa T., Hirakawa Y., Hoashi E., Yoshi-Hashi S., Measurement of Li Target Thickness in the EVEDA Li Test Loop, Fusion Eng. Des., 98-99, pp. 1991-1997, (2015)
[7]  
Kondo H., Kanemura T., Furukawa T., Hirakawa Y., Wakai E., Measurement of Cavitation in a Downstream Conduit of the Liquid Lithium Target for International Fusion Materials Irradiation Facility, 23rd International Conference on Nuclear Engineering, (2015)
[8]  
Kondo H., Furukawa T., Hirakawa Y., Nakamura K., Ida M., Watanabe K., Kanemura T., Wakai E., Horiike H., Yamaoka N., Sugiura H., Terai T., Suzuki A., Yagi J., Fukada S., Nakamura H., Matsushita I., Groeschel F., Fujishiro K., Garin P., Kimura H., IFMIF/EVEDA Lithium Test Loop: Design and Fabrication Technology of Target Assembly as a Key Component, Nucl. Fusion, 51, 12, (2011)
[9]  
Kondo H., Furukawa T., Hirakawa Y., Iuchi H., Ida M., Yagi J., Suzuki A., Fukada S., Matsushita I., Nakamura K., Design of Purification Loop and Traps for the IFMIF/EVEDA Li Test Loop: Design of Cold Trap, Fusion Eng. Des., 86, 9-11, pp. 2437-2441, (2011)
[10]  
Furukawa T., Hirakawa Y., Kato S., Iijima M., Ohtaka M., Kondo H., Kanemura T., Wakai E., Current Status of the Technology Development on Lithium Safety Handling Under IFMIF/EVEDA, Fusion Eng. Des., 89, 12, pp. 2902-2909, (2014)