Optimal multivariate control charts based on linear combination of normal variables

被引:0
|
作者
García-Bustos S. [1 ]
Plaza A. [1 ]
León J. [1 ]
Chong A.S.E. [2 ]
机构
[1] Centro de Estudios e Investigaciones Estadísticas, Escuela Superior Politécnica Del Litoral, Km 30.5 Via Perimetral, Guayaquil
[2] Department of Math, Escuela Superior Politécnica Del Litoral, Km 30.5 Via Perimetral, Guayaquil
关键词
ARL; Average run length; Control chart; Genetic algorithm; Heuristic; Normal variables; One-sided chart; Optimisation; Principal components; Shewhart chart; The Hotelling T2 control chart;
D O I
10.1504/IJISE.2020.105289
中图分类号
学科分类号
摘要
In some productive processes where normal variables intervene, it is necessary to control specific directions of shifts (increments or decrements) in the mean vector. Many multivariate control charts base their statistics on quadratic forms and do not rapidly detect a shift in a specific direction. In this paper, we propose two charts based on the linear combination of correlated normal variables, the linear combination of normal variables (LCN) and linear combination of principal components (LCPC). These charts were designed to detect a specific shift in the process. To analyse the performances of these charts, we have developed a friendly program that finds the best parameters through genetic algorithms (GA). This algorithm minimises the out-of-control average run length (ARL) for a proposed shift in the mean vector under the restriction of a desired in-control ARL value. The proposed control charts are Shewhart type, which show better performances than the Hotelling T2 chart. © 2020 Inderscience Enterprises Ltd.
引用
收藏
页码:165 / 192
页数:27
相关论文
共 50 条
  • [21] CUSUM Control Charts for Multivariate Poisson Distribution
    He, Shuguang
    He, Zhen
    Wang, G. Alan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (06) : 1192 - 1208
  • [23] Handling multivariate problems with univariate control charts
    Does, RJMM
    Roes, KCB
    Trip, A
    JOURNAL OF CHEMOMETRICS, 1999, 13 (3-4) : 353 - 369
  • [24] Sum of Squares Control Charts for Monitoring of Multivariate Multiple Linear Regression Profiles in Phase II
    Ghashghaei, Reza
    Amiri, Amirhossein
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2017, 33 (04) : 767 - 784
  • [25] Robustness properties of multivariate EWMA control charts
    Testik, MC
    Runger, GC
    Borror, CM
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2003, 19 (01) : 31 - 38
  • [26] New Control Charts for a Multivariate Gamma Distribution
    Enami, Sh
    Torabi, H.
    Niaki, S. T. A.
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2021, 17 (03) : 607 - 614
  • [27] Principal component analysis-based control charts for multivariate nonnormal distributions
    Phaladiganon, Poovich
    Kim, Seoung Bum
    Chen, Victoria C. P.
    Jiang, Wei
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (08) : 3044 - 3054
  • [28] Treatment plan quality control using multivariate control charts
    Roy, Arkajyoti
    Widjaja, Reisa
    Wang, Min
    Cutright, Dan
    Gopalakrishnan, Mahesh
    Mittal, Bharat B.
    MEDICAL PHYSICS, 2021, 48 (05) : 2118 - 2126
  • [29] Implementing optimal attributes control charts
    Schwertman, NC
    Ryan, TP
    JOURNAL OF QUALITY TECHNOLOGY, 1997, 29 (01) : 99 - 104
  • [30] The Effects of Violations of Assumptions in Multivariate Shewhart Control Charts
    Nidsunkid, S.
    Borkowski, J. J.
    Budsaba, K.
    2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2016, : 214 - 218