A methodology and tool for rapid prototyping of data warehouses using data mining: Application to birds biodiversity

被引:3
作者
Sautot, Lucile [1 ,2 ]
Bimonte, Sandro [3 ]
Journaux, Ludovic [4 ]
Faivre, Bruno [1 ]
机构
[1] Biogéosciences UMR CNRS-uB 6282, University of Burgundy, Dijon
[2] AgroParisTech, Paris
[3] Irstea, TSCF, 9 avenue Blaise Pascal CS20085, Aubiére
[4] LE2I, UMR CNRS 6306, University of Burgundy, Dijon
来源
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | 2014年 / 8748卷
关键词
Data Warehouse design; OLAMining; Rapid prototyping;
D O I
10.1007/978-3-319-11587-0_23
中图分类号
学科分类号
摘要
 Data Warehouses (DWs) are large repositories of data aimed at supporting the decision-making process by enabling flexible and interactive analyses via OLAP systems. Rapid prototyping of DWs is necessary when OLAP applications are complex. Some work about the integration of Data Mining and OLAP systems has been done to enhance OLAP operators with mined indicators, and/or to define the DW schema. However, to best of our knowledge, prototyping methods for DWs do not support this kind of integration. Then, in this paper we present a new prototyping methodology for DWs, extending [3], where DM methods are used to define the DW schema. We validate our approach on a real data set concerning bird biodiversity. © Springer International Publishing Switzerland 2014.
引用
收藏
页码:250 / 257
页数:7
相关论文
共 18 条
[1]  
Abello A., Samos J., Saltor F., YAM2: A multidimensional conceptual model extending UML, Information Systems, 31, 6, pp. 541-567, (2006)
[2]  
Bimonte S., Boulil K., Pinet F., Kang M.-A., Design of Complex Spatiomultidimensional Models with the ICSOLAP UML Profile – An Implementation in MagicDraw, Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS), 1, pp. 310-315, (2013)
[3]  
Bimonte S., Edoh-Alove E., Nazih H., Kang M.-A., Rizzi S., ProtOLAP: Rapid OLAP prototyping with on-demand data supply, Proceedings of the ACM Sixteenth International Workshop on Data Warehousing and OLAP (DOLAP), pp. 61-66, (2013)
[4]  
Favre C., Bentayeb F., Boussaid O., A knowledge-driven data warehouse model for analysis evolution, Frontiers in Artificial Intelligence and Applications, 143, pp. 271-278, (2006)
[5]  
Frochot B., Eybert M.C., Journaux L., Roche J., Faivre B., Nesting birds assemblages along the river Loire: Result from a 12 years-study, Alauda, 71, 2, pp. 179-190, (2003)
[6]  
Golfarelli M., Rizzi S., Data warehouse testing: A prototype-based methodology, Information and Software Technology, 53, pp. 1183-1198, (2011)
[7]  
Gower J.C., A general coefficient of similarity and some of its properties, Biometrics, 27, 4, pp. 857-871, (1971)
[8]  
Han J., Olap mining: An integration of OLAP with data mining, IFIP, 2, pp. 1-9, (1997)
[9]  
Huynh T.N., Schiefer J., Prototyping Data Warehouse Systems, DaWaK 2001. LNCS, 2114, pp. 195-207, (2001)
[10]  
Kimball R., The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses, (1996)