K-tree: A height balanced tree structured vector quantizer

被引:0
|
作者
机构
[1] Geva, Shlomo
来源
Geva, Shlomo | 2000年 / IEEE, Piscataway, NJ, United States卷 / 01期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] AVERAGE NUMBER OF FACETS PER CELL IN TREE-STRUCTURED VECTOR QUANTIZER PARTITIONS
    ZEGER, K
    KANTOROVITZ, MR
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) : 1053 - 1055
  • [32] On the Location of a Constrained k-Tree Facility in a Tree Network with Unreliable Edges
    Aboutahoun, Abdallah W.
    Fares, Eman
    JOURNAL OF APPLIED MATHEMATICS, 2019, 2019
  • [33] K-tree: Large Scale Document Clustering
    De Vries, Christopher M.
    Gieva, Shlomo
    PROCEEDINGS 32ND ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2009, : 718 - 719
  • [34] Independence polynomials of k-tree related graphs
    Song, Lanzhen
    Staton, William
    Wei, Bing
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (08) : 943 - 950
  • [35] Independence polynomials of k-tree related graphs
    Department of Mathematics, University of Mississippi, University, MS 38677, United States
    Discrete Appl Math, 8 (943-950):
  • [36] Heuristics for Minimum Spanning k-tree Problem
    Shangin, Roman E.
    Pardalos, Panos M.
    2ND INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT, ITQM 2014, 2014, 31 : 1074 - 1083
  • [37] A Sufficient Condition for a Graph to Have a k-tree
    Aung Kyaw
    Graphs and Combinatorics, 2001, 17 : 113 - 121
  • [38] On extremal sizes of locally k-tree graphs
    Borowiecki, Mieczyslaw
    Borowiecki, Piotr
    Sidorowicz, Elzbieta
    Skupien, Zdzislaw
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (02) : 571 - 587
  • [39] A sufficient condition for a graph to have a k-tree
    Kyaw, A
    GRAPHS AND COMBINATORICS, 2001, 17 (01) : 113 - 121
  • [40] K-TREE CONTAINER DATA-STRUCTURES
    BATES, R
    DR DOBBS JOURNAL, 1994, 19 (10): : 26 - &