K-tree: A height balanced tree structured vector quantizer

被引:0
|
作者
机构
[1] Geva, Shlomo
来源
Geva, Shlomo | 2000年 / IEEE, Piscataway, NJ, United States卷 / 01期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] COMPLEXITY OF FINDING EMBEDDINGS IN A K-TREE
    ARNBORG, S
    CORNEIL, DG
    PROSKUROWSKI, A
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1987, 8 (02): : 277 - 284
  • [22] Connected even factors in k-tree
    Li, Yinkui
    Qin, Xiaoxiao
    Li, Wen
    Wang, Xiaoling
    Ma, Haicheng
    OPEN MATHEMATICS, 2020, 18 : 1601 - 1605
  • [23] Spanning k-tree with specified vertices
    Song, Feifei
    Zhou, Jianjie
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (04)
  • [24] A k-Tree Containing Specified Vertices
    Chiba, Shuya
    Matsubara, Ryota
    Ozeki, Kenta
    Tsugaki, Masao
    GRAPHS AND COMBINATORICS, 2010, 26 (02) : 187 - 205
  • [25] Efficient algorithms for a constrained k-tree core problem in a tree network
    Wang, Biing-Feng
    Peng, Shietung
    Yu, Hong-Yi
    Ku, Shan-Chyun
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2006, 59 (02): : 107 - 124
  • [26] VLSI IMPLEMENTATION OF A TREE SEARCHED VECTOR QUANTIZER
    KOLAGOTLA, RK
    YU, SS
    JAJA, JF
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (02) : 901 - 905
  • [27] On a k-Tree Containing Specified Leaves in a Graph
    Haruhide Matsuda
    Hajime Matsumura
    Graphs and Combinatorics, 2006, 22 : 371 - 381
  • [28] On a k-tree containing specified leaves in a graph
    Matsuda, Haruhide
    Matsumura, Hajime
    GRAPHS AND COMBINATORICS, 2006, 22 (03) : 371 - 381
  • [29] On extremal sizes of locally k-tree graphs
    Mieczysław Borowiecki
    Piotr Borowiecki
    Elżbieta Sidorowicz
    Zdzisław Skupień
    Czechoslovak Mathematical Journal, 2010, 60 : 571 - 587
  • [30] Ancestors and Descendants in Evolving k-Tree Models
    Panholzer, Alois
    Seitz, Georg
    RANDOM STRUCTURES & ALGORITHMS, 2014, 44 (04) : 465 - 489