共 23 条
- [1] Koopman B.O., Hamiltonian systems and transformation in Hilbert space, Proceedings of the National Academy of Sciences of the United States of America, 17, 5, (1931)
- [2] Korda M., Mezic I., Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control, Automatica, 93, pp. 149-160, (2018)
- [3] Quan Y.S., Kim J.S., Chung C.C., Linear parameter varying models-based gain-scheduling control for lane keeping system with parameter reduction, IEEE Transactions on Intelligent Transportation Systems, 23, 11, pp. 746-820
- [4] Mauroy A., Susuki Y., Mezic I., Koopman Operator in Systems and Control, (2020)
- [5] Takeishi N., Kawahara Y., Yairi T., Learning Koopman invariant sub-spaces for dynamic mode decomposition, Advances in Neural Information Processing Systems, 30, pp. 1-11, (2017)
- [6] Han Y., Hao W., Vaidya U., Deep learning of Koopman representation for control, 2020 IEEE Conference on Decision and Control, Jeju Island, South Korea, pp. 1890-1895
- [7] Iacob L.C., Beintema G.I., Schoukens M., Toth R., Deep identification of nonlinear systems in Koopman form, 2021 IEEE Conference on Decision and Control, pp. 2288-2293
- [8] Fazlyab M., Robey A., Hassani H., Morari M., Pappas G., Efficient and accurate estimation of Lipschitz constants for deep neural networks, Advances in Neural Information Processing Systems, 32, pp. 1-12, (2019)
- [9] Brunton S.L., Kutz J.N., Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, Cambridge University Press, Cambridge, (2019)
- [10] Zhang X., Pan W., Scattolini R., Yu S., Xu X., Robust tube-based model predictive control with Koopman operators, Automatica, 137, pp. 114-120