Growth and characterization of hybrid organolead halide CH3NH3PbI3 thin films prepared by single source thermal evaporation

被引:0
作者
Fan, Ping [1 ,2 ]
Gu, Di [1 ]
Liang, Guang-Xing [1 ,2 ]
Luo, Jing-Ting [1 ,2 ]
Zhang, Dong-Ping [1 ,2 ]
Chen, Ju-Long [1 ]
机构
[1] Institute of Thin Film Physics and Applications, College of Physics Science and Technology, Shenzhen University, Shenzhen
[2] Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen
来源
Wuji Cailiao Xuebao/Journal of Inorganic Materials | 2015年 / 30卷 / 10期
基金
中国国家自然科学基金;
关键词
CH[!sub]3[!/sub]NH[!sub]3[!/sub]PbI[!sub]3[!/sub] thin films; Microstructure; Perovskite solar cell; Thermal evaporation;
D O I
10.15541/jim20150098
中图分类号
学科分类号
摘要
Hybrid organolead halide CH3NH3PbI3 thin films were prepared by thermal evaporation with single source. The microstructure, composition, surface morphology and optical properties of the thin films were characterized by X-ray diffractometry (XRD), X-ray dispersive spectroscope (EDS), scanning electron microscope (SEM) and spectrophotometer technique, respectively. The comparison on properties for the films prepared by different methods (thermal evaporation and spin coating) was illustrated. Compared to the film prepared by spin coating, uniform, the nonporous and complete surface coverage perovskite thin film with high level of phase purity and good crystallization is formed by single source thermal evaporation. A direct bandgap of 1.57 eV for CH3NH3PbI3 thin films is obtained which makes this material to be a good light absorber. ©, 2015, Science Press. All right reserved.
引用
收藏
页码:1105 / 1109
页数:4
相关论文
共 14 条
[1]  
Malinkiewicz O., Yella A., Lee Y.H., Et al., Perovskite solar cells employing organic charge-transport layers, Nature Photonics, 8, 2, pp. 128-132, (2013)
[2]  
Gonzalez-Pedro V., Juarez-Perez E.J., Arsyad W.S., Et al., General working principles of CH<sub>3</sub>NH<sub>3</sub>PbX<sub>3</sub> perovskite solar cells, Nano Letters, 14, 2, pp. 888-893, (2014)
[3]  
Stranks S.D., Eperon G.E., Grancini G., Et al., Electron-hole diffusion lengths exceeding 1 nicrometerinan organometal trihalide perovskite absorber, Science, 342, 6156, pp. 341-344, (2013)
[4]  
Kojima A., Teshima K., Shirai Y., Et al., Organometal halide perovskitesas visible-light sensitizers for photovoltaic cells, Journal of the American Chemical Society, 131, 17, pp. 6050-6051, (2009)
[5]  
(2014)
[6]  
Im J.H., Lee C.R., Lee J.W., Et al., 6.5% efficient perovskite quan-tum-dot-sensitized solar cell, Nanoscale, 3, 10, pp. 4088-4093, (2011)
[7]  
Liu M., Johnston M.B., Snaith H.J., Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501, 7467, pp. 395-398, (2013)
[8]  
He M., Zheng D., Wang M., Et al., High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction, Journal of Materials Chemistry A, 2, 17, (2014)
[9]  
Zhou H., Chen Q., Li G., Et al., Interface engineering of highly efficient perovskite solar cells, Science, 345, 6196, pp. 542-546, (2014)
[10]  
Lee M.M., Teuscher J., Miyasaka T., Et al., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 6107, pp. 643-647, (2012)