Efficient quantile regression with auxiliary information

被引:0
|
作者
Müller, Ursula U. [1 ]
Van Keilegom, Ingrid [2 ]
机构
[1] Department of Statistics, Texas AandM University, 77843-3143 College Station, TX, United States
[2] Institut de statistique, Université catholique de Louvain, Voie du Roman Pays 20, B-1348 Louvain-la-Neuve, Belgium
基金
欧洲研究理事会;
关键词
D O I
10.1007/978-3-319-02651-0_23
中图分类号
学科分类号
摘要
引用
收藏
页码:365 / 374
相关论文
共 50 条
  • [41] Focused information criterion and model averaging in censored quantile regression
    Du, Jiang
    Zhang, Zhongzhan
    Xie, Tianfa
    METRIKA, 2017, 80 (05) : 547 - 570
  • [42] Focused information criterion and model averaging in censored quantile regression
    Jiang Du
    Zhongzhan Zhang
    Tianfa Xie
    Metrika, 2017, 80 : 547 - 570
  • [43] An efficient algorithm for the weighted elastic net penalized quantile regression
    Zhang, Rui
    Fan, Jun
    Lian, Yi
    Yan, Ailing
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025,
  • [44] A two-stage procedure to pool information across quantile levels in linear quantile regression
    Kuk, Anthony
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (14) : 2852 - 2864
  • [45] Quantile regression
    Koenker, R
    Hallock, KF
    JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04): : 143 - 156
  • [46] Quantile regression
    Karlsson, Andreas
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2007, 170 : 256 - 256
  • [47] Conditional quantile estimation with auxiliary information for left-truncated and dependent data
    Liang, Han-Ying
    de Una-Alvarez, Jacobo
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (11) : 3475 - 3488
  • [48] Quantile regression
    Chernozhukov, Victor
    Galvao, Antonio F.
    He, Xuming
    Xiao, Zhijie
    JOURNAL OF ECONOMETRICS, 2019, 213 (01) : 1 - 3
  • [49] Quantile regression
    Kiranmoy Das
    Martin Krzywinski
    Naomi Altman
    Nature Methods, 2019, 16 : 451 - 452
  • [50] Quantile regression
    Das, Kiranmoy
    Krzywinski, Martin
    Altman, Naomi
    NATURE METHODS, 2019, 16 (06) : 451 - 452