A Domain Decomposition Solver for the Discontinuous Enrichment Method for the Helmholtz Equation

被引:0
作者
机构
[1] Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305
来源
Farhat, C. (cfarhat@stanford.edu) | 1600年 / Springer Verlag, Tiergartenstrasse 17, Heidelberg, D-69121, Germany卷 / 91期
关键词
D O I
10.1007/978-3-642-35275-1_23
中图分类号
学科分类号
摘要
[No abstract available]
引用
收藏
页码:207 / 214
页数:7
相关论文
共 10 条
[1]  
Cessenat O., Despres B., Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensionalHelmholtz problem, SIAM J. Numer. Anal., 35, 1, pp. 255-299, (1998)
[2]  
Farhat C., Roux F.-X., A method of finite element tearing and interconnecting and its parallel solution algorithm, Internat. J. Numer. Meths. Engrg., 32, 6, pp. 1205-1227, (1991)
[3]  
Farhat C., Macedo A., Lesoinne M., A two-level domain decompositionmethod for the iterative solution of high frequency exterior Helmholtz problems, Numer. Math., 85, 2, pp. 283-308, (2000)
[4]  
Farhat C., Harari I., Franca L.P., The discontinuous enrichment method, Comput. Methods Appl. Mech. Engrg., 190, 48, pp. 6455-6479, (2001)
[5]  
Farhat C., Harari I., Hetmaniuk U., A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime, Comput. Methods Appl. Mech. Engrg., 192, 11-12, pp. 1389-1419, (2003)
[6]  
Farhat C., Tezaur R., Weidemann-Goiran P., Higher-order extensions of a discontinuous Galerkin method for mid-frequency Helmholtz problems, Internat. J. Numer. Methods Engrg., 61, 11, pp. 1938-1956, (2004)
[7]  
Farhat C., Tezaur R., Toivanen J., A domain decomposition method for discontinuous Galerkin discretizations of Helmholtz problems with plane waves and Lagrange multipliers, Internat. J. Numer. Methods Engrg., 78, 13, pp. 1513-1531, (2009)
[8]  
Melenk J.M., Babuska I., The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139, 1-4, pp. 289-314, (1996)
[9]  
Tezaur R., Farhat C., Three-dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of midfrequency Helmholtz problems, Internat. J. Numer. Methods Engrg., 66, 5, pp. 796-815, (2006)
[10]  
Wang D., Tezaur R., Toivanen J., Farhat C., Overview of the discontinuous enrichment method, the ultra-weak variational formulation, and the partition of unity method for acoustic scattering in the medium frequency regime and performance comparisons, Internat. J. Numer. Methods Engrg., 89, 4, pp. 403-417, (2012)