An improvement lqp method for nonlinear complementarity problems

被引:0
作者
Bnouhachem A. [1 ]
Qin X. [2 ]
机构
[1] Equipe MAISI, Ibn Zohr University, ENSA, BP 1136, Agadir
[2] General Education Center, National Yunlin University of Science and Technology, Douliou
来源
Applied Set-Valued Analysis and Optimization | 2020年 / 2卷 / 01期
关键词
Interior proximal methods; Nonlinear complementarity problems; Pseudomonotone operators;
D O I
10.23952/asvao.2.2020.1.06
中图分类号
O24 [计算数学];
学科分类号
070102 ;
摘要
In this paper, we propose a new modified logarithmic-quadratic proximal method for solving the nonlinear complementarity problem. An easily measurable error term is proposed with further relaxed error bound and a new step length is employed to reach substantial progress in each iteration. Preliminary numerical experiments are included to illustrate the advantage and efficiency of the proposed method. ©2020 Applied Set-Valued Analysis and Optimization
引用
收藏
页码:95 / 107
页数:12
相关论文
共 27 条
[1]  
Auslender A., Teboulle M., Ben-Tiba S., A Logarithmic-quadratic proximal method for variational inequalities, Comput. Optim. Appl, 12, pp. 31-40, (1999)
[2]  
Auslender A., Teboulle M., Ben-Tiba S., Interior proximal and multiplier methods based on second order homogenous kernels, Math. Oper. Res, 24, pp. 646-668, (1999)
[3]  
Auslender A., Teboule M., Interior projection-like methods for monotone variational inequalities, Math. Program. Ser. A, 104, pp. 39-68, (2005)
[4]  
Bnouhachem A., An LQP Method for pseudomonotone variational inequalities, J. Global Optim, 36, pp. 351-363, (2006)
[5]  
Bnouhachem A., Yuan X., An extended LQP method for monotone nonlinear complementarity problems, J. Optim. Theory Appl, 135, pp. 343-353, (2007)
[6]  
Bnouhachem A., Noor M.A., Khalfaoui M., Zhaohan S., A new logarithmic-quadratic proximal method for nonlinear complementarity problems, Appl. Math. Comput, 215, pp. 695-706, (2009)
[7]  
Bnouhachem A., Ou-yassine A., Noor M.A., Lakhnati G., Modified LQP method with a new search direction for nonlinear complimentarity problems, Appl. Math. Inf. Sci, 10, pp. 1375-1383, (2016)
[8]  
Burachik R. S., Iusem A. N., Svaiter B. F., Enlargement of monotone operators with applications to variational inequalities, Set-Valued Anal, 5, pp. 159-180, (1997)
[9]  
Burachik R. S., Iusem A. N., A generalized proximal point algorithm for the variational inequality problem in a Hilbert space, SIAM J. Optim, 8, pp. 197-216, (1998)
[10]  
Dong X., Cai X., Han D., Prediction-correction method with BB step sizes, Frontiers Math. China, 13, pp. 1325-1340, (2018)