A sensitivity result for quadratic semidefinite programs with an application to a sequential quadratic semidefinite programming algorithm

被引:5
作者
Garcés, Rodrigo [1 ]
Gómez, Walter [2 ]
Jarre, Florian [3 ]
机构
[1] EuroAmerica S.A., Las Condes, Santiago
[2] Department of Mathematical Engineering, Universidad de La Frontera, 01145, Temuco, Av. Francisco Salazar
[3] Institut für Mathematik, Universität Düsseldorf, D-40225 Düsseldorf
关键词
Convergence; Quadratic semidefinite programming; Second order sufficient condition; Semidefinite programming; Sensitivity; Sequential quadratic programming;
D O I
10.1590/S1807-03022012000100011
中图分类号
学科分类号
摘要
In this short note a sensitivity result for quadratic semidefinite programming is presented under a weak form of second order sufficient condition. Based on this result, also the local convergence of a sequential quadratic semidefinite programming algorithm extends to this weak second order sufficient condition. © 2012 SBMAC.
引用
收藏
页码:205 / 218
页数:13
相关论文
共 50 条
[31]   New semidefinite programming relaxations for box constrained quadratic program [J].
Yong Xia .
Science China Mathematics, 2013, 56 :877-886
[32]   Stochastic linear-quadratic control via semidefinite programming [J].
Yao, DD ;
Zhang, SZ ;
Zhou, XY .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 40 (03) :801-823
[33]   Penalized semidefinite programming for quadratically-constrained quadratic optimization [J].
Madani, Ramtin ;
Kheirandishfard, Mohsen ;
Lavaei, Javad ;
Atamturk, Alper .
JOURNAL OF GLOBAL OPTIMIZATION, 2020, 78 (03) :423-451
[34]   Semidefinite relaxations for quadratically constrained quadratic programming: A review and comparisons [J].
Bao, Xiaowei ;
Sahinidis, Nikolaos V. ;
Tawarmalani, Mohit .
MATHEMATICAL PROGRAMMING, 2011, 129 (01) :129-157
[35]   A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations [J].
Samuel Burer ;
Dieter Vandenbussche .
Mathematical Programming, 2008, 113 :259-282
[36]   A computational study for bilevel quadratic programs using semidefinite relaxations [J].
Adasme, Pablo ;
Lisser, Abdel .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 254 (01) :9-18
[37]   New semidefinite programming relaxations for box constrained quadratic program [J].
XIA Yong .
ScienceChina(Mathematics), 2013, 56 (04) :874-883
[38]   Penalized semidefinite programming for quadratically-constrained quadratic optimization [J].
Ramtin Madani ;
Mohsen Kheirandishfard ;
Javad Lavaei ;
Alper Atamtürk .
Journal of Global Optimization, 2020, 78 :423-451
[39]   Semidefinite relaxations for quadratically constrained quadratic programming: A review and comparisons [J].
Xiaowei Bao ;
Nikolaos V. Sahinidis ;
Mohit Tawarmalani .
Mathematical Programming, 2011, 129
[40]   Improved semidefinite programming bounds for quadratic assignment problems with suitable symmetry [J].
Etienne de Klerk ;
Renata Sotirov .
Mathematical Programming, 2012, 133 :75-91