LiMnPO4/graphene nanocomposites with high electrochemical performance for lithium-ion batteries

被引:0
作者
Zhao B. [1 ]
Wang Z. [1 ]
Chen L. [1 ]
Yang Y. [1 ]
Chen F. [1 ]
Gao Y. [1 ]
Jiang Y. [1 ]
机构
[1] Institute of Environmental and Chemical Engineering, Shanghai University, Shanghai
来源
Huagong Xuebao/CIESC Journal | 2016年 / 67卷 / 11期
基金
中国国家自然科学基金;
关键词
Aminopropyltrimethoxysilane modification; Composites; Electrochemistry; Lithium manganese phosphate; Nanomaterials;
D O I
10.11949/j.issn.0438-1157.20160651
中图分类号
学科分类号
摘要
A high performance LiMnPO4/graphene nanocomposite as cathode material for lithium-ion batteries was prepared via surface modification of 3-aminopropyltrimethoxysilane (APS) on LiMnPO4 nanoparticles and electrostatic self-assembly of positively charged APS-LiMnPO4 nanoparticles and negatively charged graphene oxide. Successful APS modification on LiMnPO4 was demonstrated by the existence of 3-aminopropyl and Si-O-C groups in FTIR spectra. LiMnPO4 nanoparticles (ca.25 nm) were found uniformly distributed on the surface of graphene sheets. The intimate contact of LiMnPO4 nanoparticles with graphene conductive network allows achieving fast electron transfer between the active material and charge collector and accommodating volume expansion/contraction of LiMnPO4 nanoparticles during electric discharge/charge process. The nanocomposite cathode material could deliver an initial capacity of 142.2 mA·h·g-1 at 0.05 C and maintain 90.5% capacity after 50 cycles, which were significant better than no APS-modified counterpart. © All Right Reserved.
引用
收藏
页码:4779 / 4786
页数:7
相关论文
共 36 条
  • [1] Padhi A.K., Najundaswamy K.S., Goodenough J.B., Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, Journal of the Electrochemical Society, 144, 4, pp. 1188-1194, (1997)
  • [2] Yamada A., Kudo Y., Liu K.Y., Reaction mechanism of the olivine-type Li<sub>x</sub>(Mn<sub>0.6</sub>Fe<sub>0.4</sub>)PO<sub>4</sub> (0≤x≤1), Journal of the Electrochemical Society, 148, 7, pp. 747-754, (2001)
  • [3] Delacout C., Laffont L., Bouchet R., Et al., Toward understanding of electrical limitations (electronic, ionic) in LiMPO<sub>4</sub> (M=Fe, Mn) electrode materials, Journal of the Electrochemical Society, 152, 5, pp. 913-921, (2005)
  • [4] Kang B., Ceder G., Battery materials for ultrafast charging and discharging, Nature, 458, 7235, pp. 190-193, (2009)
  • [5] Zhao B., Jiang Y., Zhang H., Et al., Morphology and electrical properties of carbon coated LiFePO<sub>4</sub> cathode materials, Journal of Power Sources, 189, 1, pp. 462-466, (2009)
  • [6] Zhou F., Cococcioni M., Kang K., Et al., The Li intercalation potential of LiMPO<sub>4</sub> and LiMSiO<sub>4</sub> olivines with M=Fe, Mn, Co, Ni, Electrochemistry Communications, 6, 11, pp. 1144-1148, (2004)
  • [7] Yonemura M., Yamada A., Takei Y., Et al., Comparative kinetic study of olivine Li<sub>x</sub>MPO<sub>4</sub> (M=Fe, Mn), Journal of the Electrochemical Society, 151, 9, pp. 1352-1356, (2004)
  • [8] Kontje M., Memm M., Axmann P., Et al., Substituted transition metal phospho olivines LiMM'PO<sub>4</sub> (M=Mn, M'=Fe, Co, Mg): optimisation routes for LiMnPO<sub>4</sub>, Journal of Solid State Chemistry, 42, 4, pp. 106-117, (2014)
  • [9] Hong Y., Tang Z., Zhang Z., Enhanced electrochemical properties of LiMnPO<sub>4</sub>/C composites by tailoring polydopamine-derived carbon coating, Electrochimica Acta, 176, pp. 369-377, (2015)
  • [10] Delacourt C., Poizot P., Morcrette M., Et al., One-step low-temperature route for the preparation of electrochemically active LiMnPO<sub>4</sub> powders, Chemistry of Materials, 16, 1, pp. 93-99, (2004)