RANDOM WALKS, CONDUCTANCE, AND RESISTANCE FOR THE CONNECTION GRAPH LAPLACIAN

被引:0
作者
Cloninger, Alexander [1 ,2 ]
Mishne, Gal [2 ]
Oslandsbotn, Andreas [3 ]
Robertson, Sawyer J. [1 ,2 ]
Wan, Zhengchao [2 ]
Wang, Yusu [2 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Hahhoglu Data Sci Inst, La Jolla, CA 92093 USA
[3] Univ Oslo, Dept Informat, Oslo, Norway
关键词
effective resistance; connection Laplacian; random walks; Dirichlet problem; Poisson problem; ALGORITHMS; TOPOLOGY;
D O I
10.1137/23M1595400
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the concept of effective resistance in connection graphs, expanding its traditional application from undirected graphs. We propose a robust definition of effective resistance in connection graphs by focusing on the duality of Dirichlet-type and Poisson-type problems on connection graphs. Additionally, we delve into random walks, taking into account both node transitions and vector rotations. This approach introduces novel concepts of effective conductance and resistance matrices for connection graphs, capturing mean rotation matrices corresponding to random walk transitions. Thereby, it provides new theoretical insights for network analysis and optimization.
引用
收藏
页码:1541 / 1572
页数:32
相关论文
共 50 条
  • [41] Random Walks and Bisections in Random Circulant Graphs
    Mans, Bernard
    Shparlinski, Igor E.
    LATIN 2012: THEORETICAL INFORMATICS, 2012, 7256 : 542 - 555
  • [42] On the speed of Random Walks among Random Conductances
    Berger, Noam
    Salvi, Michele
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (02): : 1063 - 1083
  • [43] Collisions of random walks in dynamic random environments
    Halberstam, Noah
    Hutchcroft, Tom
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [44] MULTIPLE RANDOM WALKS IN RANDOM REGULAR GRAPHS
    Cooper, Colin
    Frieze, Alan
    Radzik, Tomasz
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (04) : 1738 - 1761
  • [45] Random walks on a fractal solid
    Kozak, JJ
    JOURNAL OF STATISTICAL PHYSICS, 2000, 101 (1-2) : 405 - 414
  • [46] Counting trees with random walks
    Iacobelli, Giulio
    Figueiredo, Daniel R.
    Barbosa, Valmir C.
    EXPOSITIONES MATHEMATICAE, 2019, 37 (01) : 96 - 102
  • [47] Distributed Computation of Sparse Cuts via Random Walks
    Das Sarma, Atish
    Molla, Anisur Rahaman
    Pandurangan, Gopal
    PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING AND NETWORKING, 2015,
  • [48] Evolutionary Image Transition and Painting Using Random Walks
    Neumann, Aneta
    Alexander, Bradley
    Neumann, Frank
    EVOLUTIONARY COMPUTATION, 2020, 28 (04) : 643 - 675
  • [49] Return of Fibonacci random walks
    Neunhaeuserer, Joerg
    STATISTICS & PROBABILITY LETTERS, 2017, 121 : 51 - 53
  • [50] Random Walks on the Folded Hypercube
    Chen, Hong
    Li, Xiaoyan
    Lin, Cheng-Kuan
    JOURNAL OF INTERNET TECHNOLOGY, 2019, 20 (06): : 1987 - 1994