RANDOM WALKS, CONDUCTANCE, AND RESISTANCE FOR THE CONNECTION GRAPH LAPLACIAN

被引:0
作者
Cloninger, Alexander [1 ,2 ]
Mishne, Gal [2 ]
Oslandsbotn, Andreas [3 ]
Robertson, Sawyer J. [1 ,2 ]
Wan, Zhengchao [2 ]
Wang, Yusu [2 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Hahhoglu Data Sci Inst, La Jolla, CA 92093 USA
[3] Univ Oslo, Dept Informat, Oslo, Norway
关键词
effective resistance; connection Laplacian; random walks; Dirichlet problem; Poisson problem; ALGORITHMS; TOPOLOGY;
D O I
10.1137/23M1595400
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the concept of effective resistance in connection graphs, expanding its traditional application from undirected graphs. We propose a robust definition of effective resistance in connection graphs by focusing on the duality of Dirichlet-type and Poisson-type problems on connection graphs. Additionally, we delve into random walks, taking into account both node transitions and vector rotations. This approach introduces novel concepts of effective conductance and resistance matrices for connection graphs, capturing mean rotation matrices corresponding to random walk transitions. Thereby, it provides new theoretical insights for network analysis and optimization.
引用
收藏
页码:1541 / 1572
页数:32
相关论文
共 50 条
  • [31] Disordered Random Walks
    Mauricio P. Pato
    Brazilian Journal of Physics, 2021, 51 : 238 - 243
  • [32] Collisions of random walks
    Barlow, Martin T.
    Peres, Yuval
    Sousi, Perla
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (04): : 922 - 946
  • [33] Approximations of the connection Laplacian spectra
    Dmitri Burago
    Sergei Ivanov
    Yaroslav Kurylev
    Jinpeng Lu
    Mathematische Zeitschrift, 2022, 301 : 3185 - 3206
  • [34] Approximations of the connection Laplacian spectra
    Burago, Dmitri
    Ivanov, Sergei
    Kurylev, Yaroslav
    Lu, Jinpeng
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (03) : 3185 - 3206
  • [35] Random Walks, Bisections and Gossiping in Circulant Graphs
    Mans, Bernard
    Shparlinski, Igor
    ALGORITHMICA, 2014, 70 (02) : 301 - 325
  • [36] On Extension of Effective Resistance With Application to Graph Laplacian Definiteness and Power Network Stability
    Song, Yue
    Hill, David J.
    Liu, Tao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (11) : 4415 - 4428
  • [37] Collisions of random walks in reversible random graphs
    Hutchcroft, Tom
    Peres, Yuval
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 : 2 - 6
  • [38] ON THE RANGE OF RANDOM-WALKS IN RANDOM ENVIRONMENT
    ZHOU, XY
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1995, 16 (01) : 131 - 138
  • [39] Random random walks on the integers mod n
    Dai, JJ
    Hildebrand, MV
    STATISTICS & PROBABILITY LETTERS, 1997, 35 (04) : 371 - 379
  • [40] EINSTEIN RELATION FOR RANDOM WALKS IN RANDOM ENVIRONMENT
    Guo, Xiaoqin
    ANNALS OF PROBABILITY, 2016, 44 (01) : 324 - 359