RANDOM WALKS, CONDUCTANCE, AND RESISTANCE FOR THE CONNECTION GRAPH LAPLACIAN
被引:0
|
作者:
Cloninger, Alexander
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
Univ Calif San Diego, Hahhoglu Data Sci Inst, La Jolla, CA 92093 USAUniv Calif San Diego, Dept Math, La Jolla, CA 92093 USA
Cloninger, Alexander
[1
,2
]
Mishne, Gal
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Hahhoglu Data Sci Inst, La Jolla, CA 92093 USAUniv Calif San Diego, Dept Math, La Jolla, CA 92093 USA
Mishne, Gal
[2
]
Oslandsbotn, Andreas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oslo, Dept Informat, Oslo, NorwayUniv Calif San Diego, Dept Math, La Jolla, CA 92093 USA
Oslandsbotn, Andreas
[3
]
Robertson, Sawyer J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
Univ Calif San Diego, Hahhoglu Data Sci Inst, La Jolla, CA 92093 USAUniv Calif San Diego, Dept Math, La Jolla, CA 92093 USA
Robertson, Sawyer J.
[1
,2
]
Wan, Zhengchao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Hahhoglu Data Sci Inst, La Jolla, CA 92093 USAUniv Calif San Diego, Dept Math, La Jolla, CA 92093 USA
Wan, Zhengchao
[2
]
Wang, Yusu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Hahhoglu Data Sci Inst, La Jolla, CA 92093 USAUniv Calif San Diego, Dept Math, La Jolla, CA 92093 USA
Wang, Yusu
[2
]
机构:
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Hahhoglu Data Sci Inst, La Jolla, CA 92093 USA
We investigate the concept of effective resistance in connection graphs, expanding its traditional application from undirected graphs. We propose a robust definition of effective resistance in connection graphs by focusing on the duality of Dirichlet-type and Poisson-type problems on connection graphs. Additionally, we delve into random walks, taking into account both node transitions and vector rotations. This approach introduces novel concepts of effective conductance and resistance matrices for connection graphs, capturing mean rotation matrices corresponding to random walk transitions. Thereby, it provides new theoretical insights for network analysis and optimization.