RANDOM WALKS, CONDUCTANCE, AND RESISTANCE FOR THE CONNECTION GRAPH LAPLACIAN

被引:0
|
作者
Cloninger, Alexander [1 ,2 ]
Mishne, Gal [2 ]
Oslandsbotn, Andreas [3 ]
Robertson, Sawyer J. [1 ,2 ]
Wan, Zhengchao [2 ]
Wang, Yusu [2 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Hahhoglu Data Sci Inst, La Jolla, CA 92093 USA
[3] Univ Oslo, Dept Informat, Oslo, Norway
关键词
effective resistance; connection Laplacian; random walks; Dirichlet problem; Poisson problem; ALGORITHMS; TOPOLOGY;
D O I
10.1137/23M1595400
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the concept of effective resistance in connection graphs, expanding its traditional application from undirected graphs. We propose a robust definition of effective resistance in connection graphs by focusing on the duality of Dirichlet-type and Poisson-type problems on connection graphs. Additionally, we delve into random walks, taking into account both node transitions and vector rotations. This approach introduces novel concepts of effective conductance and resistance matrices for connection graphs, capturing mean rotation matrices corresponding to random walk transitions. Thereby, it provides new theoretical insights for network analysis and optimization.
引用
收藏
页码:1541 / 1572
页数:32
相关论文
共 50 条
  • [1] RANDOM WALKS ON THE RANDOM GRAPH
    Berestycki, Nathanael
    Lubetzky, Eyal
    Peres, Yuval
    Sly, Allan
    ANNALS OF PROBABILITY, 2018, 46 (01) : 456 - 490
  • [2] Restricted random walks on a graph
    F. Y. Wu
    H. Kunz
    Annals of Combinatorics, 1999, 3 (2-4) : 475 - 481
  • [3] Random Walks on Simplicial Complexes and the Normalized Hodge 1-Laplacian
    Schaub, Michael T.
    Benson, Austin R.
    Horn, Paul
    Lippner, Gabor
    Jadbabaie, Ali
    SIAM REVIEW, 2020, 62 (02) : 353 - 391
  • [4] Reweighted Random Walks for Graph Matching
    Cho, Minsu
    Lee, Jungmin
    Lee, Kyoung Mu
    COMPUTER VISION-ECCV 2010, PT V, 2010, 6315 : 492 - 505
  • [5] Random walks on a finite graph with congestion points
    Kang, MH
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 153 (02) : 601 - 610
  • [6] Resistance distance in graphs and random walks
    Palacios, JL
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2001, 81 (01) : 29 - 33
  • [7] Visual Tracking via Random Walks on Graph Model
    Li, Xiaoli
    Han, Zhifeng
    Wang, Lijun
    Lu, Huchuan
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (09) : 2144 - 2155
  • [8] Exact and approximate graph matching using random walks
    Gori, M
    Maggini, M
    Sarti, L
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (07) : 1100 - 1111
  • [9] CURVATURE AND HIGHER ORDER BUSER INEQUALITIES FOR THE GRAPH CONNECTION LAPLACIAN
    Liu, Shiping
    Muench, Florentin
    Peyerimhoff, Norbert
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (01) : 257 - 305
  • [10] Random walks and the effective resistance sum rules
    Chen, Haiyan
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (15) : 1691 - 1700