Synthetic Data Augmentation for Video Action Classification Using Unity

被引:1
作者
Cauli, Nino [1 ]
Reforgiato Recupero, Diego [1 ]
机构
[1] Univ Cagliari, Dept Math & Comp Sci, I-09124 Cagliari, Italy
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Data augmentation; action recognition; convolutional neural networks; video transformers; synthetic video generation;
D O I
10.1109/ACCESS.2024.3485199
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In video analysis, collection and labeling of data can be time and resource-consuming. To solve the scarcity of data problems, synthetic data augmentation is a promising solution. In this paper, we present an approach to generate synthetic videos for action recognition using Unity, the popular game engine. The synthetic videos are generated with high variability in lighting, subjects' models, backgrounds, animations, and camera positions. We use the generated data to augment a small dataset of subjects who are executing physical exercises for action recognition. We tested the augmented data on two state-of-the-art models for action classification and demonstrated the significant benefits of synthetic data augmentation for improving the performance of these models on small datasets in the context of video action recognition.
引用
收藏
页码:156172 / 156183
页数:12
相关论文
共 55 条
  • [1] Abu-El-Haija S., 2016, arXiv
  • [2] ViViT: A Video Vision Transformer
    Arnab, Anurag
    Dehghani, Mostafa
    Heigold, Georg
    Sun, Chen
    Lucic, Mario
    Schmid, Cordelia
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 6816 - 6826
  • [3] Bertasius G, 2021, PR MACH LEARN RES, V139
  • [4] Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
    Carreira, Joao
    Zisserman, Andrew
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4724 - 4733
  • [5] Survey on Videos Data Augmentation for Deep Learning Models
    Cauli, Nino
    Recupero, Diego Reforgiato
    [J]. FUTURE INTERNET, 2022, 14 (03)
  • [6] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [7] Dosovitskiy A, 2021, INT C LEARN REPR
  • [8] Games E., Unreal Engine Homepage
  • [9] Vision meets robotics: The KITTI dataset
    Geiger, A.
    Lenz, P.
    Stiller, C.
    Urtasun, R.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) : 1231 - 1237
  • [10] Goceri Evgin, 2020, 2020 IEEE 4th International Conference on Image Processing, Applications and Systems (IPAS), P144, DOI 10.1109/IPAS50080.2020.9334937