Identifying the parameters of photovoltaic cells using Gaussian bare-bone imperialist competitive algorithm with opposition-based learning mechanism

被引:0
作者
Zhang, Wenjun [1 ]
Li, Peng [1 ]
Wang, Hongli [1 ]
Yang, Wei [1 ]
Lei, Dongge [2 ]
Wu, Fei [2 ]
机构
[1] State GRID Quzhou Power Supply Co, 6 Xinhe Rd, Quzhou 324003, Zhejiang, Peoples R China
[2] Quzhou Univ, Coll Elect & Informat Engn, Quzhou 324000, Zhejiang, Peoples R China
关键词
OPTIMIZATION; MODELS; IDENTIFICATION; EXTRACTION;
D O I
10.1063/5.0227978
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Extracting the precise parameters of photovoltaic (PV) cells has become very important for simulation, evaluation, control, and optimization of PV systems. However, it is still a challenging task to accurately and reliably extract the parameters of PV cells. To solve this difficult problem, in this paper, a new meta-heuristic algorithm called Gaussian bare-bone imperialist competitive algorithm with opposition-based learning (OBL-GBBICA) is proposed to extract the parameters of PV cells. To strengthen the exploring ability and speed up the convergence, opposition-based learning (OBL) is introduced into an imperialist competitive algorithm (ICA) for two considerations. First, OBL is adopted in the population initialization to produce a high-quality population. Second, the OBL is introduced into the assimilation step to guide ICA to explore more promising regions. The above improvements not only speed up the convergence of ICA but also enhance its searchability, which is beneficial to improving the accuracy and reliability of identification results. Experimental results show that OBL-GBBICA exhibits great superiority in extracting the PV cells parameters, compared with other methods in the literature.
引用
收藏
页数:11
相关论文
共 24 条
  • [1] Parameter Estimation of Photovoltaic Cell/Modules Using Bonobo Optimizer
    Al-Shamma'a, Abdullrahman A.
    Omotoso, Hammed O.
    Alturki, Fahd A.
    Farh, Hassan. M. H.
    Alkuhayli, Abdulaziz
    Alsharabi, Khalil
    Noman, Abdullah M.
    [J]. ENERGIES, 2022, 15 (01)
  • [2] Atashpaz-Gargari E, 2007, IEEE C EVOL COMPUTAT, P4661, DOI 10.1109/cec.2007.4425083
  • [3] Parameter extraction for photovoltaic models with tree seed algorithm
    Beskirli, Ayse
    Dag, Idiris
    [J]. ENERGY REPORTS, 2023, 9 : 174 - 185
  • [4] Comprehensive Learning Particle Swarm Optimization Algorithm With Local Search for Multimodal Functions
    Cao, Yulian
    Zhang, Han
    Li, Wenfeng
    Zhou, Mengchu
    Zhang, Yu
    Chaovalitwongse, Wanpracha Art
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (04) : 718 - 731
  • [5] Coyote optimization algorithm for the parameter extraction of photovoltaic cells
    Chin, Vun Jack
    Salam, Zainal
    [J]. SOLAR ENERGY, 2019, 194 : 656 - 670
  • [6] Easwarakhanthan T., 1986, International Journal of Solar Energy, V4, P1, DOI 10.1080/01425918608909835
  • [7] Simulated Annealing algorithm for photovoltaic parameters identification
    El-Naggar, K. M.
    AlRashidi, M. R.
    AlHajri, M. F.
    Al-Othrnan, A. K.
    [J]. SOLAR ENERGY, 2012, 86 (01) : 266 - 274
  • [8] Henry gas solubility optimization: A novel physics-based algorithm
    Hashim, Fatma A.
    Houssein, Essam H.
    Mabrouk, Mai S.
    Al-Atabany, Walid
    Mirjalili, Seyedali
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 101 : 646 - 667
  • [9] Solar cell parameter extraction using genetic algorithms
    Jervase, JA
    Bourdoucen, H
    Al-Lawati, A
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2001, 12 (11) : 1922 - 1925
  • [10] Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models
    Jiao, Shan
    Chong, Guoshuang
    Huang, Changcheng
    Hu, Hanqing
    Wang, Mingjing
    Heidari, Ali Asghar
    Chen, Huiling
    Zhao, Xuehua
    [J]. ENERGY, 2020, 203