Split Edge-Cloud Neural Networks for Better Adversarial Robustness

被引:0
|
作者
Douch, Salmane [1 ]
Abid, Mohamed Riduan [2 ]
Zine-Dine, Khalid [3 ]
Bouzidi, Driss [1 ]
Benhaddou, Driss [4 ]
机构
[1] Mohammed V Univ Rabat, Natl Sch Comp Sci & Syst Anal ENSIAS, Rabat 30050, Morocco
[2] Columbus State Univ, TSYS Sch Comp Sci, Columbus, GA 31907 USA
[3] Mohammed V Univ Rabat, Fac Sci FSR, Rabat 30050, Morocco
[4] Alfaisal Univ, Coll Engn, Riyadh 11533, Saudi Arabia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Robustness; Edge computing; Perturbation methods; Computational modeling; Cloud computing; Certification; Biological neural networks; Quantization (signal); Image edge detection; Deep learning; Adversarial attacks; cloud computing; edge computing; edge intelligence; robustness certification; split neural networks;
D O I
10.1109/ACCESS.2024.3487435
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cloud computing is a critical component in the success of 5G and 6G networks, particularly given the computation-intensive nature of emerging applications. Despite all it advantages, cloud computing faces limitations in meeting the strict latency and bandwidth requirements of applications such as eHealth and automotive systems. To overcome these limitations, edge computing has emerged as a novel paradigm that bring computation closer to the user. Moreover, intelligent tasks such as deep learning ones demand more memory and processing power than edge devices can handle. To address these challenges, methods like quantization, pruning, and distributed inference have been proposed. Similarly, this paper study a promising approach for running deep learning models at the edge: split neural networks (SNN). SNNs feature a neural network architecture with multiple early exit points, allowing the model to make confident decisions at earlier layers without processing the entire network. This not only reduces memory and computational demands but it also makes SNNs well-suited for edge computing applications. As the use of SNNs expands, ensuring their safety-particularly their robustness to perturbations-becomes crucial for deployment in safety-critical scenarios. This paper presents the first in-depth study on the robustness of split Edge Cloud neural networks. We review state-of-the-art robustness certification techniques and evaluate SNN robustness using the auto_LiRPA and Auto Attack libraries, comparing them to standard neural networks. Our results demonstrate that SNNs reduce average inference time by 75'% and certify 4 to 10 times more images as robust, while improving overall robustness accuracy by 1% to 10%.
引用
收藏
页码:158854 / 158865
页数:12
相关论文
共 50 条
  • [31] Edge-Cloud Collaborative Computation Offloading for Mixed Traffic
    Li, Qirui
    Guo, Mian
    Peng, Zhiping
    Cui, Delong
    He, Jieguang
    IEEE SYSTEMS JOURNAL, 2023, 17 (03): : 5023 - 5034
  • [32] Resource Utilization of Distributed Databases in Edge-Cloud Environment
    Mansouri, Yaser
    Prokhorenko, Victor
    Ullah, Faheem
    Babar, Muhammad Ali
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (11) : 9423 - 9437
  • [33] A Systematic Review on Federated Learning in Edge-Cloud Continuum
    Sambit Kumar Mishra
    Subham Kumar Sahoo
    Chinmaya Kumar Swain
    SN Computer Science, 5 (7)
  • [34] A Survey and Taxonomy on Task Offloading for Edge-Cloud Computing
    Wang, Bo
    Wang, Changhai
    Huang, Wanwei
    Song, Ying
    Qin, Xiaoyun
    IEEE ACCESS, 2020, 8 : 186080 - 186101
  • [35] Smart Transportation: An Edge-Cloud Hybrid Computing Perspective
    Jaisimha, Aashish
    Khan, Salman
    Anisha, B. S.
    Kumar, P. Ramakanth
    INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES, ICICCT 2019, 2020, 89 : 1263 - 1271
  • [36] Towards Improving Robustness of Deep Neural Networks to Adversarial Perturbations
    Amini, Sajjad
    Ghaemmaghami, Shahrokh
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (07) : 1889 - 1903
  • [37] Students health physique information sharing in publicly collaborative services over edge-cloud networks
    Liu, Ping
    Shi, Dai
    Zang, Bin
    Liu, Xiang
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2024, 13 (01):
  • [38] Enabling microservices management for Deep Learning applications across the Edge-Cloud Continuum
    Houmani, Zeina
    Balouek-Thomert, Daniel
    Caron, Eddy
    Parashar, Manish
    2021 IEEE 33RD INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2021), 2021, : 137 - 146
  • [39] IoT Microservice Deployment in Edge-Cloud Hybrid Environment Using Reinforcement Learning
    Chen, Lulu
    Xu, Yangchuan
    Lu, Zhihui
    Wu, Jie
    Gai, Keke
    Hung, Patrick C. K.
    Qiu, Meikang
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (16): : 12610 - 12622
  • [40] Interaction of Edge-Cloud Computing Based on SDN and NFV for Next Generation IoT
    Lv, Zhihan
    Xiu, Wenqun
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07) : 5706 - 5712