Split Edge-Cloud Neural Networks for Better Adversarial Robustness

被引:0
|
作者
Douch, Salmane [1 ]
Abid, Mohamed Riduan [2 ]
Zine-Dine, Khalid [3 ]
Bouzidi, Driss [1 ]
Benhaddou, Driss [4 ]
机构
[1] Mohammed V Univ Rabat, Natl Sch Comp Sci & Syst Anal ENSIAS, Rabat 30050, Morocco
[2] Columbus State Univ, TSYS Sch Comp Sci, Columbus, GA 31907 USA
[3] Mohammed V Univ Rabat, Fac Sci FSR, Rabat 30050, Morocco
[4] Alfaisal Univ, Coll Engn, Riyadh 11533, Saudi Arabia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Robustness; Edge computing; Perturbation methods; Computational modeling; Cloud computing; Certification; Biological neural networks; Quantization (signal); Image edge detection; Deep learning; Adversarial attacks; cloud computing; edge computing; edge intelligence; robustness certification; split neural networks;
D O I
10.1109/ACCESS.2024.3487435
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cloud computing is a critical component in the success of 5G and 6G networks, particularly given the computation-intensive nature of emerging applications. Despite all it advantages, cloud computing faces limitations in meeting the strict latency and bandwidth requirements of applications such as eHealth and automotive systems. To overcome these limitations, edge computing has emerged as a novel paradigm that bring computation closer to the user. Moreover, intelligent tasks such as deep learning ones demand more memory and processing power than edge devices can handle. To address these challenges, methods like quantization, pruning, and distributed inference have been proposed. Similarly, this paper study a promising approach for running deep learning models at the edge: split neural networks (SNN). SNNs feature a neural network architecture with multiple early exit points, allowing the model to make confident decisions at earlier layers without processing the entire network. This not only reduces memory and computational demands but it also makes SNNs well-suited for edge computing applications. As the use of SNNs expands, ensuring their safety-particularly their robustness to perturbations-becomes crucial for deployment in safety-critical scenarios. This paper presents the first in-depth study on the robustness of split Edge Cloud neural networks. We review state-of-the-art robustness certification techniques and evaluate SNN robustness using the auto_LiRPA and Auto Attack libraries, comparing them to standard neural networks. Our results demonstrate that SNNs reduce average inference time by 75'% and certify 4 to 10 times more images as robust, while improving overall robustness accuracy by 1% to 10%.
引用
收藏
页码:158854 / 158865
页数:12
相关论文
共 50 条
  • [11] Toward a Performance-Based Trustworthy Edge-Cloud Continuum
    Dhanapala, Indika
    Bharti, Sourabh
    McGibney, Alan
    Rea, Susan
    IEEE ACCESS, 2024, 12 : 99201 - 99212
  • [12] Towards Optimal Application Offloading in Heterogeneous Edge-Cloud Computing
    Ji, Tingxiang
    Wan, Xili
    Guan, Xinjie
    Zhu, Aichun
    Ye, Feng
    IEEE TRANSACTIONS ON COMPUTERS, 2023, 72 (11) : 3259 - 3272
  • [13] Dynamic Service Provisioning in the Edge-Cloud Continuum With Bounded Resources
    Cohen, Itamar
    Chiasserini, Carla Fabiana
    Giaccone, Paolo
    Scalosub, Gabriel
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2023, 31 (06) : 3096 - 3111
  • [14] CoEdge: Exploiting the Edge-Cloud Collaboration for Faster Deep Learning
    Hu, Liangyan
    Sun, Guodong
    Ren, Yanlong
    IEEE ACCESS, 2020, 8 : 100533 - 100541
  • [15] Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks
    Zhang, Qi
    Gui, Lin
    Zhu, Shichao
    Lang, Xiupu
    IEEE ACCESS, 2021, 9 : 85350 - 85366
  • [16] Robustness Against Adversarial Attacks in Neural Networks Using Incremental Dissipativity
    Aquino, Bernardo
    Rahnama, Arash
    Seiler, Peter
    Lin, Lizhen
    Gupta, Vijay
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2341 - 2346
  • [17] Optimized resource allocation in edge-cloud environment
    Randriamasinoro, Njakarison Menja
    Nguyen, Kim Khoa
    Cheriet, Mohamed
    12TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON2018), 2018, : 816 - 823
  • [18] Dynamic Scheduling for Stochastic Edge-Cloud Computing Environments Using A3C Learning and Residual Recurrent Neural Networks
    Tuli, Shreshth
    Ilager, Shashikant
    Ramamohanarao, Kotagiri
    Buyya, Rajkumar
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (03) : 940 - 954
  • [19] ALBLA: an adaptive load balancing approach in edge-cloud networks utilizing learning automata
    Ghorbani, Mehdi
    Khaledian, Navid
    Moazzami, Setareh
    COMPUTING, 2025, 107 (01)
  • [20] ESCOVE: Energy-SLA-Aware Edge-Cloud Computation Offloading in Vehicular Networks
    Ismail, Leila
    Materwala, Huned
    SENSORS, 2021, 21 (15)