Electrolyte Composition-Dependent Product Selectivity in CO2 Reduction with a Porphyrinic Metal-Organic Framework Catalyst

被引:11
作者
Pu, Si-Hua [1 ,2 ]
Huang, Tao [1 ]
Si, Duan-Hui [1 ]
Sun, Meng-Jiao [1 ,2 ]
Wang, Wen-Wen [1 ,3 ,4 ]
Zhang, Teng [1 ,2 ,3 ]
Cao, Rong [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Fujian Coll, Fuzhou 350002, Fujian, Peoples R China
[4] Fujian Normal Univ, Coll Chem & Mat Sci, Fuzhou 350007, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
metal-organic framework; CO2; reduction; metalloporphyrin; electrocatalysis; CARBON-DIOXIDE; BASIS-SETS; ELECTROREDUCTION; CONVERSION; DENSITY; ELECTROCATALYSTS; DESIGN; SITES;
D O I
10.1002/anie.202411766
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A copper porphyrin-derived metal-organic framework electrocatalyst, FICN-8, was synthesized and its catalytic activity for CO2 reduction reaction (CO2RR) was investigated. FICN-8 selectively catalyzed electrochemical reduction of CO2 to CO in anhydrous acetonitrile electrolyte. However, formic acid became the dominant CO2RR product with the addition of a proton source to the system. Mechanistic studies revealed the change of major reduction pathway upon proton source addition, while catalyst-bound hydride (*H) species was proposed as the key intermediate for formic acid production. This work highlights the importance of electrolyte composition on CO2RR product selectivity.
引用
收藏
页数:7
相关论文
共 75 条
[1]   Through-Space Charge Interaction Substituent Effects in Molecular Catalysis Leading to the Design of the Most Efficient Catalyst of CO2-to-CO Electrochemical Conversion [J].
Azcarate, Iban ;
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (51) :16639-16644
[2]   Electrochemical CO2 Reduction: A Classification Problem [J].
Bagger, Alexander ;
Ju, Wen ;
Sofia Varela, Ana ;
Strasser, Peter ;
Rossmeisl, Jan .
CHEMPHYSCHEM, 2017, 18 (22) :3266-3273
[3]   Progress toward Commercial Application of Electrochemical Carbon Dioxide Reduction [J].
Chen, Chi ;
Kotyk, Juliet F. Khosrowabadi ;
Sheehan, Stafford W. .
CHEM, 2018, 4 (11) :2571-2586
[4]   Lewis Acid Site-Promoted Single-Atomic Cu Catalyzes Electrochemical CO2 Methanation [J].
Chen, Shenghua ;
Wang, Bingqing ;
Zhu, Jiexin ;
Wang, Liqiang ;
Ou, Honghui ;
Zhang, Zedong ;
Liang, Xiao ;
Zheng, Lirong ;
Zhou, Liang ;
Su, Ya-Qiong ;
Wang, Dingsheng ;
Li, Yadong .
NANO LETTERS, 2021, 21 (17) :7325-7331
[5]   Degradation of p-arsanilic acid by pre-magnetized Fe0/persulfate system: Kinetics, mechanism, degradation pathways and DBPs formation during subsequent chlorination [J].
Chen, Shengnan ;
Deng, Jing ;
Ye, Cheng ;
Xu, Chengcheng ;
Huai, Lingyi ;
Ling, Xiao ;
Li, Jun ;
Li, Xueyan .
CHEMICAL ENGINEERING JOURNAL, 2021, 410
[6]  
Chen X., 2023, Han , Adv. Mater., V36
[7]   Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion [J].
Dai, Yizhou ;
Li, Huan ;
Wang, Chuanhao ;
Xue, Weiqing ;
Zhang, Menglu ;
Zhao, Donghao ;
Xue, Jing ;
Li, Jiawei ;
Luo, Laihao ;
Liu, Chunxiao ;
Li, Xu ;
Cui, Peixin ;
Jiang, Qiu ;
Zheng, Tingting ;
Gu, Songqi ;
Zhang, Yao ;
Xiao, Jianping ;
Xia, Chuan ;
Zeng, Jie .
NATURE COMMUNICATIONS, 2023, 14 (01)
[8]  
Deng B., 2021, ACS Catal., V12, p331 362
[9]   CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface [J].
Dinh, Cao-Thang ;
Burdyny, Thomas ;
Kibria, Md Golam ;
Seifitokaldani, Ali ;
Gabardo, Christine M. ;
de Arquer, F. Pelayo Garcia ;
Kiani, Amirreza ;
Edwards, Jonathan P. ;
De Luna, Phil ;
Bushuyev, Oleksandr S. ;
Zou, Chengqin ;
Quintero-Bermudez, Rafael ;
Pang, Yuanjie ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2018, 360 (6390) :783-787
[10]   Molecular polypyridine-based metal complexes as catalysts for the reduction of CO2 [J].
Elgrishi, Noemie ;
Chambers, Matthew B. ;
Wang, Xia ;
Fontecave, Marc .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (03) :761-796