Surface-modified CMOS biosensors

被引:0
作者
Dehghandehnavi, Fahimeh [1 ]
Sajal, Md. Sakibur [1 ]
Dandin, Marc [1 ]
机构
[1] Carnegie Mellon Univ, Elect & Comp Engn Dept, Integrated Circuits & Bioengn Lab, Pittsburgh, PA 15213 USA
基金
美国安德鲁·梅隆基金会;
关键词
complementary metal-oxide-semiconductor (CMOS); biosensor; immobilization; post-CMOS process; transduction; lab-on-a-chip (LOC); FIELD-EFFECT TRANSISTOR; ASTROCYTE-DERIVED ATP; SENSOR ARRAY; OPTICAL-DETECTION; IMAGE SENSOR; FRONT-END; IN-VITRO; CHIP; DNA; CHEMILUMINESCENCE;
D O I
10.3389/fbioe.2024.1441430
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Biosensors translate biological events into electronic signals that quantify biological processes. They are increasingly used in in vitro diagnostics applications that leverage their ability to process small sample volumes. One recent trend has been to integrate biosensors with complementary metal-oxide-semiconductor (CMOS) chips to provide enhanced miniaturization, parallel sensing, and low power consumption at a low cost. CMOS-enabled biosensors are used in monitoring DNA hybridization, enzymatic reactions, and cell proliferation, to name a few applications. This paper explores the materials and processes used in emerging CMOS biosensors. We discuss subtractive and additive processes for creating electrodes for electrochemical sensing applications. We discuss functionalization techniques for creating bioelectronic interfaces that allow molecular events to be transduced into the electrical domain using a plurality of modalities that are readily provided by CMOS chips. Example modalities featured are optical sensing, electrochemical detection, electrical detection, magnetic sensing, and mechanical sensing.
引用
收藏
页数:21
相关论文
共 133 条
[1]   Giant magnetoresistive biosensors for real-time quantitative detection of protease activity [J].
Adem, Sandeep ;
Jain, Sonal ;
Sveiven, Michael ;
Zhou, Xiahan ;
O'Donoghue, Anthony J. ;
Hall, Drew A. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[2]   Designing of various biosensor devices for determination of apoptosis: A comprehensive review [J].
Akcapinar, Rumeysa ;
Garipcan, Bora ;
Goodarzi, Vahabodin ;
Uzun, Lokman .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2021, 578 :42-62
[3]   Multimodal Integrated Sensor Platform for Rapid Biomarker Detection [J].
Al-Rawhani, Mohammed A. ;
Mitra, Srinjoy ;
Barrett, Michael P. ;
Cochran, Sandy ;
Cumming, David R. S. ;
Hu, Chunxiao ;
Giagkoulovits, Christos ;
Annese, Valerio F. ;
Cheah, Boon Chong ;
Beeley, James ;
Velugotla, Srinivas ;
Accarino, Claudio ;
Grant, James P. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2020, 67 (02) :614-623
[4]   Nanowire-Based Biosensors: From Growth to Applications [J].
Ambhorkar, Pranav ;
Wang, Zongjie ;
Ko, Hyuongho ;
Lee, Sangmin ;
Koo, Kyo-in ;
Kim, Keekyoung ;
Cho, Dong-il .
MICROMACHINES, 2018, 9 (12)
[5]   Recent advances in the potential applications of luminescence-based, SPR-based, and carbon-based biosensors [J].
Anand, Uttpal ;
Chandel, Arvind K. Singh ;
Oleksak, Patrik ;
Mishra, Amarnath ;
Krejcar, Ondrej ;
Raval, Ishan H. ;
Dey, Abhijit ;
Kuca, Kamil .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2022, 106 (08) :2827-2853
[6]   CMOS-compatible biosensor for L-carnitine detection [J].
Andrianova, M. S. ;
Kuznetsov, E. V. ;
Grudtsov, V. P. ;
Kuznetsov, A. E. .
BIOSENSORS & BIOELECTRONICS, 2018, 119 :48-54
[7]   MOLECULAR RECTIFIERS [J].
AVIRAM, A ;
RATNER, MA .
CHEMICAL PHYSICS LETTERS, 1974, 29 (02) :277-283
[8]   Electrochemical Sensors and Their Applications: A Review [J].
Baranwal, Jaya ;
Barse, Brajesh ;
Gatto, Gianluca ;
Broncova, Gabriela ;
Kumar, Amit .
CHEMOSENSORS, 2022, 10 (09)
[9]   Micro/Nano fabricated cantilever based biosensor platform: A review and recent progress [J].
Basu, Aviru Kumar ;
Basu, Adreeja ;
Bhattacharya, Shantanu .
ENZYME AND MICROBIAL TECHNOLOGY, 2020, 139