共 43 条
- [31] Zhang R., Zhao L., Liu R., Deciphering the toxicity of bisphenol a to Candida rugosa lipase through spectrophotometric methods, J. Photoch. Photobio. B, 163, pp. 40-46, (2016)
- [32] Svendsen A., Lipase protein engineering, BBA-Protein Struct. Mol. Enzymol., 1543, 2, pp. 223-238, (2000)
- [33] Grochulski P., Li Y., Schrag J.D., Et al., Insights into interfacial activation from an open structure of Candida rugosa lipase, J. Biol. Chem., 268, 17, pp. 12843-12847, (1993)
- [34] Li X., Zhang C., Li S., Et al., Improving catalytic performance of Candida rugosa lipase by chemical modification with polyethylene glycol functional ionic liquids, Ind. Eng. Chem. Res., 54, 33, pp. 8072-8079, (2015)
- [35] Du M.L., Lu D.N., Liu Z., Design and synthesis of lipase nanogel with interpenetrating polymer networks for enhanced catalysis: molecular simulation and experimental validation, J. Mol. Catal. B-Enzym., 88, pp. 60-68, (2013)
- [36] Keefe A.J., Jiang S., Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity, Nature Chemistry, 4, 1, pp. 60-64, (2012)
- [37] Verger R., Interfacial enzyme kinetics of lipolysis, Annual Review of Biophysics and Bioengineering, 5, pp. 77-117, (1976)
- [38] Gao B., Xu T., Lin J., Et al., Improving the catalytic activity of lipase LipK107 from Proteus sp. By Site-Directed Mutagenesis in the Lid Domain Based on Computer Simulation, J. Mol. Catal. B-Enzym., 68, 3-4, pp. 286-291, (2011)
- [39] Zhang X.F., Yu X.W., Xu Y., Improvement of catalytic activity of Aspergillus terreus lipase by site-directed mutagenesis, Chin. J. Biotechnol., 34, 7, pp. 1091-1105, (2018)
- [40] Zhang C.Y., Dong X.Y., Guo Z., Et al., Remarkably enhanced activity and substrate affinity of lipase covalently bonded on zwitterionic polymer-grafted silica nanoparticles, J. Colloid Interf. Sci., 519, pp. 145-153, (2018)