Biosensor integrated circuits using CMOS technology

被引:0
作者
Niitsu K. [1 ]
Nakazato K. [2 ]
机构
[1] Nagoya University, Furo-cho, Chikusa-ku, Nagoya
[2] JST, PRESTO 4-1-8, Honcho, Kawaguchi, Saitama
基金
日本学术振兴会;
关键词
Biosensor; CMOS; Integrated circuits;
D O I
10.1541/ieejsmas.137.291
中图分类号
学科分类号
摘要
This review article outlines biosensor integrated circuits using CMOS technology. As typical CMOS-based biosensor integrated circuits, potentiometry, amperometry, impedimetry, and so on were introduced. In addition, recent topics of CMOS-based integrated circuits are also reviewed. © 2017 The Institute of Electrical Engineers of Japan.
引用
收藏
页码:291 / 295
页数:4
相关论文
共 12 条
[1]  
Rothberg J.M., Hinz W., Rearick T.M., Schultz J., Mileski W., Davey M., Leamon J.H., Johnson K., Milgrew M.J., Edwards M., Hoon J., Simons J.F., Marran D., Myers J.W., Davidson J.F., Branting A., Nobile J.R., Puc B.P., Light D., Clark T.A., Huber M., Branciforte J.T., Stoner I.B., Cawley S.E., Lyons M., Fu Y., Homer N., Sedova M., Miao X., Reed B., Sabina J., Feierstein E., Schorn M., Alanjary M., Dimalanta E., Dressman D., Kasinskas R., Sokolsky T., Fidanza J.A., Namsaraev E., McKernan K.J., Wi
[2]  
Kuno T., Niitsu K., Nakazato K., Amperometric electrochemical sensor array for on-chip simultaneous imaging, Japanese J. of Applied Physics, 53, (2014)
[3]  
Barsoukov E., MacDonald J., Impedance Spectroscopy: Theory, Experiment, and Applications, (2005)
[4]  
Ishihara H., Niitsu K., Nakazato K., Analysis and experimental verification of DNA single base polymerization detection using CMOS fet-based redox potential sensor array, Japanese Journal of Applied Physics, 54, 4 S, (2015)
[5]  
Niitsu K., Ota S., Gamo K., Kondo H., Hori M., Nakazato K., Development of microelectrode arrays using electroless plating for CMOS-based direct counting of bacterial and hela cells, IEEE Transactions on Biomedical Circuits and Systems, 9, 5, pp. 607-619, (2015)
[6]  
Komori H., Niitsu K., Tanaka J., Ishige Y., Kamahori M., Nakazato K., An extended-gate CMOS sensor array with enzyme-immobilized microbeads for redox-potential glucose detection, Proc IEEE Biomedical Circuits and Systems Conference, pp. 464-467, (2014)
[7]  
Lee S.B., Lee H.M., Kiani M., Jow U.M., Ghovanloo M., An inductively powered scalable 32-channel wireless neural recording system-on-A-chip for neuroscience applications, IEEE Trans. on Biomedical Circuits and Systems, 4, 6, pp. 360-371, (2010)
[8]  
Roy A., Klinefelter A., Yahya F.B., Chen X., Gonzalez-Guerrero L.P., Lukas C.J., Kamakshi D.A., Boley J., Craig K., Faisal M., Oh S., Roberts N.E., Shakhsheer Y., Shrivastava A., Vasudevan D.P., Wentzloff D.D., Calhoun B.H., A 6.45 μw self-powered soc with integrated energy-harvesting power management and ulp asymmetric radios for portable biomedical systems, IEEE Trans. on Biomedical Circuits and Systems, 9, 6, pp. 862-874, (2015)
[9]  
Ogawa Y., Kato K., Miyake T., Nagamine K., Ofuji T., Yoshino S., Nishizawa M., Organic transdermal iontophoresis patch with built-in biofuel cell, Adv. Healthcare Materials, 4, 4, pp. 506-510, (2015)
[10]  
Miyake T., Yoshino S., Yamada T., Hata K., Nishizawa M., Self-regulating enzyme-nanotube ensemble films and their application as flexible electrodes for biofuel cells, J. of the American Chemical Society, 133, 13, pp. 5129-5134, (2011)