Observation of the spin Nernst effect

被引:0
作者
Meyer S. [1 ,2 ]
Chen Y.-T. [3 ,4 ]
Wimmer S. [5 ]
Althammer M. [1 ]
Wimmer T. [1 ,2 ]
Schlitz R. [1 ,9 ]
Geprags S. [1 ]
Huebl H. [1 ,2 ,6 ]
Kodderitzsch D. [5 ]
Ebert H. [5 ]
Bauer G.E.W. [3 ,7 ,8 ]
Gross R. [1 ,2 ,6 ]
Goennenwein S.T.B. [1 ,2 ,6 ,10 ]
机构
[1] Walther-Meißner-Institut, Bayerische Akademie DerWissenschaften, Walther-Meißner-Straße 8, Garching
[2] Physik-Department, Technische Universitat Munchen, Garching
[3] Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, CJ Delft
[4] RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa,Wako, Saitama
[5] Department Chemie, Physikalische Chemie, Universitat Munchen, Butenandtstraße 5-13, Munchen
[6] Nanosystems Initiative Munich (NIM), Schellingstraße 4, Munchen
[7] Institute for Materials Research, Tohoku University, Sendai, Miyagi
[8] WPI Advanced Institute for Materials Research, Tohoku University, Sendai
[9] Institut fur Festkrperphysik, Technische Universitat Dresden, Dresden
[10] Center for Transport and Devices of Emergent Materials, Technische Universitat Dresden, Dresden
来源
| 1600年 / Nature Publishing Group卷 / 16期
关键词
Calculations - Yttrium iron garnet - Crystal symmetry;
D O I
10.1038/NMAT4964
中图分类号
学科分类号
摘要
The observation of the spin Hall effect triggered intense research on pure spin current transport. With the spin Hall effect, the spin Seebeck effect and the spin Peltier effect already observed, our picture of pure spin current transport is almost complete. The only missing piece is the spin Nernst (-Ettingshausen) effect, which so far has been discussed only on theoretical grounds. Here, we report the observation of the spin Nernst effect. By applying a longitudinal temperature gradient, we generate a pure transverse spin current in a Pt thin film. For readout, we exploit the magnetization-orientation-dependent spin transfer to an adjacent yttrium iron garnet layer, converting the spin Nernst current in Pt into a controlled change of the longitudinal and transverse thermopower voltage. Our experiments show that the spin Nernst and the spin Hall effect in Pt are of comparable magnitude, but differ in sign, as corroborated by first-principles calculations. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
引用
收藏
页码:97 / 981
页数:884
相关论文
共 30 条
[1]  
Kato Y.K., Myers R.C., Gossard A.C., Awschalom D.D., Observation of the spin Hall Effect in semiconductors, Science, 306, pp. 1910-1913, (2004)
[2]  
Wunderlich J., Kaestner B., Sinova J., Jungwirth T., Experimental observation of the spin-Hall Effect in a two-dimensional spin-orbit coupled semiconductor system, Phys. Rev. Lett, 94, (2005)
[3]  
Wunderlich J., Et al., Spin Hall Effect transistor, Science, 330, pp. 1801-1804, (2010)
[4]  
Sinova J., Valenzuela S.O., Wunderlich J., Back C.H., Jungwirth T., Spin Hall effects, Rev. Mod. Phys, 87, pp. 1213-1259, (2015)
[5]  
Valenzuela S.O., Tinkham M., Direct electronic measurement of the spin Hall Effect, Nature, 442, pp. 176-179, (2006)
[6]  
Saitoh E., Ueda M., Miyajima H., Tatara G., Conversion of spin current into charge current at room temperature: Inverse spin-Hall Effect, Appl. Phys. Lett, 88, (2006)
[7]  
Uchida K., Et al., Observation of the spin Seebeck Effect, Nature, 455, pp. 778-781, (2008)
[8]  
Jaworski C.M., Et al., Observation of the spin-Seebeck Effect in a ferromagnetic semiconductor, Nat. Mater, 9, pp. 898-903, (2010)
[9]  
Uchida K., Et al., Observation of longitudinal spin-Seebeck Effect in magnetic insulators, Appl. Phys. Lett, 97, (2010)
[10]  
Flipse J., Bakker F.L., Slachter A., Dejene F.K., VanWees B.J., Direct observation of the spin-dependent Peltier Effect, Nat. Nanotech, 7, pp. 166-168, (2012)