Phase error correction algorithm for grating projection measurement system

被引:0
作者
Wu, Shuyu [1 ,2 ]
Yang, Yimin [1 ]
Zhong, Zhenyu [2 ]
Lu, Xingjian [2 ]
机构
[1] School of Automation, Guangdong University of Technology, Guangzhou
[2] Guangdong Institute of Automation, Guangzhou
来源
Zhong, Z. (zy.zhong@gia.ac.cn) | 1600年 / Chinese Optical Society卷 / 34期
关键词
Least square method; Measurement; Monotonous smoothing algorithm;
D O I
10.3788/AOS201434.0712005
中图分类号
学科分类号
摘要
Based on monotonous growth characteristics of the phase of grating images, a monotonous smoothing algorithm based on least square method is proposed for phase error compensation. The monotonous characteristics and error of phase are analyzed in detail. Then a monotonous smoothing algorithm based on developed least square method is used to correct phase error of absolute phase diagram. Experimental results show that the gamma nonlinearity of the projector is reduced by more than 60%, and the corrected absolute phase has the advantage of good smooth.
引用
收藏
相关论文
共 19 条
[1]  
Luhmann T., Robson S., Kyle S., Et al., Close Range Photogrammetry: Principles, Techniques and Applications, (2006)
[2]  
Chen F., Brown G., Song M., Overview of three-dimensional shape measurement using optical methods, Opt Eng, 39, 1, pp. 10-22, (2000)
[3]  
Da F., Gai S., Flexible three-dimensional measurement technique based on a digital light processing projector, Appl Opt, 47, 3, pp. 377-385, (2007)
[4]  
Li Z., Wang C., Shi Y., Et al., High precision phase error compensation algorithm for structural light measurement, Acta Optica Sinica, 28, 8, pp. 1527-1532, (2008)
[5]  
Du H., Zhao H., Li B., Et al., Demodulating the phase of phase-shifting shadow moire using arbitrary phase shift, Acta Optica Sinica, 32, 9, (2012)
[6]  
Zhai A., Cao Y., He Y., 3D measurement with orthogonal composite structkure light based on two-plus-shifting alogorithm, Chinese J Lasers, 29, 2, (2012)
[7]  
Zheng D., Da F., Double-step phase-shifting algorithm for fringe-projection measurement, Acta Optica Sinica, 32, 5, (2012)
[8]  
Hu Y.S., Xi J.T., Li E.B., Et al., Three-dimensional profilometry based on shift estimation of projected fringe patterns, Appl Opt, 45, 4, pp. 678-687, (2006)
[9]  
Guo H.W., He H.T., Chen M.Y., Gamma correction for digital fringe projection profilometry, Appl Opt, 43, 14, pp. 2906-2914, (2004)
[10]  
Baker M., Xi J., Chieharo J., Neural network digital fringe calibration technique for structured light profilometers, Appl Opt, 46, 8, pp. 1233-1243, (2007)