Adaptive Robust Tracking Control With Active Learning for Linear Systems With Ellipsoidal Bounded Uncertainties

被引:0
作者
Ma, Xuehui [1 ]
Zhang, Shiliang [2 ]
Li, Yushuai [3 ]
Qian, Fucai [1 ]
Sun, Zhiyong [4 ]
Huang, Tingwen [5 ]
机构
[1] Xian Univ Technol, Sch Automat & Informat Engn, Xian 710049, Peoples R China
[2] Univ Oslo, Dept Informat, N-0313 Oslo, Norway
[3] Aalborg Univ, Dept Comp Sci, DK-9220 Aalborg, Denmark
[4] Eindhoven Univ Technol, Dept Elect Engn, NL-5612 AZ Eindhoven, Netherlands
[5] Shenzhen Univ Adv Technol, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertainty; Ellipsoids; Robust control; Uncertain systems; Vectors; Estimation; Control systems; Adaptive control; ellipsoidal set; linear systems; robust control; uncertain systems; MODEL-PREDICTIVE CONTROL;
D O I
10.1109/TAC.2024.3410912
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article is concerned with the robust tracking control of linear uncertain systems, whose unknown system parameters and disturbances are bounded within ellipsoidal sets. We propose an adaptive robust control that can actively learn the ellipsoid sets. Particularly, our approach utilizes the ellipsoidal set-membership estimation in learning the ellipsoid sets, aiming at narrowing the uncertainty boundaries to reduce the conservativeness in robust control. To further improve the transient performance during the uncertainty learning, we enrich the information fed to the learning by maximizing the volume of the ellipsoid set. The maximized set volume stimulates the system to actively learn the uncertainties and leads to accelerated uncertainty reduction. We conduct numerical simulations to demonstrate the improvement of the proposed method.
引用
收藏
页码:8096 / 8103
页数:8
相关论文
共 20 条
[1]   Second-order cone programming [J].
Alizadeh, F ;
Goldfarb, D .
MATHEMATICAL PROGRAMMING, 2003, 95 (01) :3-51
[2]   Stochastic MPC With Robustness to Bounded Parameteric Uncertainty [J].
Arcari, Elena ;
Iannelli, Andrea ;
Carron, Andrea ;
Zeilinger, Melanie N. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (12) :7601-7615
[3]  
Astrom K. J., 2012, INTRO STOCHASTIC CON
[4]   State estimation in the presence of bounded disturbances [J].
Becis-Aubry, Y. ;
Boutayeb, A. ;
Darouach, M. .
AUTOMATICA, 2008, 44 (07) :1867-1873
[5]   Min-max control of constrained uncertain discrete-time linear systems [J].
Bemporad, A ;
Borrelli, F ;
Morari, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (09) :1600-1606
[6]   Constrained Stochastic LQC: A tractable approach [J].
Bertsimas, Dimitris ;
Brown, David B. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (10) :1826-1841
[7]  
Filatov N. M., 2004, Adaptive Dual Control: Theory and Applications
[8]   Survey of adaptive dual control methods [J].
Filatov, NM ;
Unbehauen, H .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2000, 147 (01) :118-128
[9]   Worst-case formulations of model predictive control for systems with bounded parameters [J].
Lee, JH ;
Yu, ZH .
AUTOMATICA, 1997, 33 (05) :763-781
[10]   Robust MPC with recursive model update [J].
Lorenzen, Matthias ;
Cannon, Mark ;
Allgoewer, Frank .
AUTOMATICA, 2019, 103 :461-471