Recent status, key strategies, and challenging prospects for fast charging silicon-based anodes for lithium-ion batteries

被引:18
作者
Wang, Tiantian [1 ]
Wang, Zhoulu [1 ]
Li, Haiying [2 ]
Cheng, Long [1 ]
Wu, Yutong [1 ]
Liu, Xiang [1 ]
Meng, Leichao [3 ]
Zhang, Yi [1 ]
Jiang, Shan [4 ]
机构
[1] Nanjing Tech Univ, Sch Energy Sci & Engn, Nanjing 211816, Jiangsu Provinc, Peoples R China
[2] Nanjing Tech Univ, Coll Architecture, Nanjing 211816, Jiangsu Provinc, Peoples R China
[3] Qinghai Minzu Univ, Sch Phys & Elect Informat Engn, Qinghai Prov Key Lab Nanomat & Technol, Xining 81007, Qinghai Provinc, Peoples R China
[4] Xidian Univ, Hangzhou Inst Technol, Hangzhou 311200, Zhejiang Provin, Peoples R China
关键词
Lithium-ion batteries; Fast-charging; Volume expansion; SI-AT-C; HIGH-ENERGY; HIGH-CAPACITY; CARBON; PERFORMANCE; ELECTRODE; COMPOSITES; INTERPHASE; NANOFIBERS; PARTICLES;
D O I
10.1016/j.carbon.2024.119615
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As the global electric vehicle market grows rapidly and the demand for fast-charging battery technology continues to increase, the development of high-performance lithium-ion batteries (LIBs) with fast-charging capability has become an inevitable trend. However, the application of silicon-based anode in lithium-ion batteries suffers from key technical obstacles such as volume expansion and other problems, capacity degradation during fast charging, and safety hazards. This paper reviews recent advances, fundamentals, key strategies, and challenging perspectives on silicon anodes for realizing fast-charging lithium-ion batteries. First, the main challenges of fast-charging silicon anode are analyzed by revealing the lithium storage mechanism of silicon anode. Then, we outline the key strategies for realizing fast-charging lithium-ion batteries and recent advances in improving rate performance involving composite design, structural design, multifunctional binder and electrolyte design. Finally, the challenges and future directions for the development of fast-charging lithium-ion batteries are highlighted, providing insights into the further commercialization of fast-charging lithium-ion batteries.
引用
收藏
页数:19
相关论文
共 201 条
[1]   Real-Time TEM Observation of the Role of Defects on Nickel Silicide Propagation in Silicon Nanowires [J].
Adegoke, Temilade Esther ;
Bekarevich, Raman ;
Geaney, Hugh ;
Belochapkine, Sergey ;
Bangert, Ursel ;
Ryan, Kevin M. .
ACS NANO, 2024, 18 (14) :10270-10278
[2]   Si Nanowires: From Model System to Practical Li-Ion Anode Material and Beyond [J].
Ahad, Syed Abdul ;
Kennedy, Tadhg ;
Geaney, Hugh .
ACS ENERGY LETTERS, 2024, 9 (04) :1548-1561
[3]   Lithium-conducting covalent-organic-frameworks as artificial solid-electrolyte-interphase on silicon anode for high performance lithium ion batteries [J].
Ai, Qing ;
Fang, Qiyi ;
Liang, Jia ;
Xu, Xinyu ;
Zhai, Tianshu ;
Gao, Guanhui ;
Guo, Hua ;
Han, Guifang ;
Ci, Lijie ;
Lou, Jun .
NANO ENERGY, 2020, 72
[4]   Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas [J].
Bao, Zhihao ;
Weatherspoon, Michael R. ;
Shian, Samuel ;
Cai, Ye ;
Graham, Phillip D. ;
Allan, Shawn M. ;
Ahmad, Gul ;
Dickerson, Matthew B. ;
Church, Benjamin C. ;
Kang, Zhitao ;
Abernathy, Harry W., III ;
Summers, Christopher J. ;
Liu, Meilin ;
Sandhage, Kenneth H. .
NATURE, 2007, 446 (7132) :172-175
[5]   First Principles Study of Aluminum Doped Polycrystalline Silicon as a Potential Anode Candidate in Li-ion Batteries [J].
Bhimineni, Sree Harsha ;
Ko, Shu-Ting ;
Cornwell, Casey ;
Xia, Yantao ;
Tolbert, Sarah H. ;
Luo, Jian ;
Sautet, Philippe .
ADVANCED ENERGY MATERIALS, 2024, 14 (34)
[6]   Enabling fast charging - Infrastructure and economic considerations [J].
Burnham, Andrew ;
Dufek, Eric J. ;
Stephens, Thomas ;
Francfort, James ;
Michelbacher, Christopher ;
Carlson, Richard B. ;
Zhang, Jiucai ;
Vijayagopal, Ram ;
Dias, Fernando ;
Mohanpurkar, Manish ;
Scoffield, Don ;
Hardy, Keith ;
Shirk, Matthew ;
Hovsapian, Rob ;
Ahmed, Shabbir ;
Bloom, Ira ;
Jansen, Andrew N. ;
Keyser, Matthew ;
Kreuzer, Cory ;
Markel, Anthony ;
Meintz, Andrew ;
Pesaran, Ahmad ;
Tanim, Tanvir R. .
JOURNAL OF POWER SOURCES, 2017, 367 :237-249
[7]   Flexible heteroatom-doped porous carbon nanofiber cages for electrode scaffolds [J].
Cai, Weiping ;
Zhang, Yuanyuan ;
Jia, Yongtang ;
Yan, Jianhua .
CARBON ENERGY, 2020, 2 (03) :472-481
[8]   Rational Design of a Multifunctional Binder for High-Capacity Silicon-Based Anodes [J].
Cao, Peng-Fei ;
Yang, Guang ;
Li, Bingrui ;
Zhang, Yiman ;
Zhao, Sheng ;
Zhang, Shuo ;
Erwin, Andrew ;
Zhang, Zhengcheng ;
Sokolov, Alexei P. ;
Nanda, Jagjit ;
Saito, Tomonori .
ACS ENERGY LETTERS, 2019, 4 (05) :1171-1180
[9]   Stacking pressure homogenizes the electrochemical lithiation reaction of silicon anode in solid-state batteries [J].
Cao, Qingbo ;
Sun, Zhe-Tao ;
Ye, Ke ;
Shen, Peng ;
Jiang, Kun ;
Bo, Shou-Hang .
ENERGY STORAGE MATERIALS, 2024, 67
[10]   A Micrometer-Sized Silicon/Carbon Composite Anode Synthesized by Impregnation of Petroleum Pitch in Nanoporous Silicon [J].
Chae, Sujong ;
Xu, Yaobin ;
Yi, Ran ;
Lim, Hyung-Seok ;
Velickovic, Dusan ;
Li, Xiaolin ;
Li, Qiuyan ;
Wang, Chongmin ;
Zhang, Ji-Guang .
ADVANCED MATERIALS, 2021, 33 (40)