Dual-wavelength digital holography based on phase-division multiplexing using four wavelength-multiplexed phase-shifted holograms and zeroth-order diffraction-image suppression

被引:0
作者
Tahara T. [1 ,2 ]
Otani R. [3 ]
Arai Y. [1 ]
Takaki Y. [4 ]
机构
[1] Faculty of Engineering Science, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka
[2] PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama
[3] SIGMAKOKI Co., Ltd, 17-2 Shimotakahagi-shinden, Hidaka-shi, Saitama
[4] Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
Color digital holography; Digital holography; Holography; Phase-division multiplexing (PDM) of wavelengths; Phase-shifting interferometry;
D O I
10.20965/ijat.2017.p0806
中图分类号
学科分类号
摘要
We propose a dual-wavelength phase-shifting digital holography technique with four wavelengthmultiplexed holograms based on phase-division multiplexing utilizing the 2p ambiguity and zeroth-order diffraction-image suppression. Zeroth-order wave suppression is implemented by introducing the averaging method. Its effectiveness is experimentally shown and numerically and quantitatively investigated. The numerical investigation demonstrates the tolerance of the proposed technique against incoherent light noise and changes in the reference wave intensity. The image quality in the proposed technique depends on the intensity ratio between the object and reference waves but does not degrade with constant changes in intensity. In contrast, a previously reported four-step dual-wavelength phase-shifting technique was affected by the factors described above. © 2017, Fuji Technology Press. All rights reserved.
引用
收藏
页码:806 / 813
页数:7
相关论文
共 54 条
  • [11] Takeda M., Ina H., Kobayashi S., Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry, J. Opt. Soc. Am., 72, pp. 156-160, (1982)
  • [12] Onodera R., Ishii Y., Two-wavelength interferometry that uses a Fourier-transform method, Appl. Opt., 37, pp. 7988-7994, (1998)
  • [13] Ferraro P., Alferi D., De Nicola S., De Petrocellis L., Finizio A., Pierattini G., Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction, Opt. Lett., 31, pp. 1405-1407, (2006)
  • [14] Poon T.C., Wu M.H., Shinoda K.K., Suzuki Y., Doh K.B., Schilling B.W., Three-dimensional microscopy by optical scanning holography, Opt. Eng., 34, pp. 1338-1344, (1995)
  • [15] Takaki Y., Kawai H., Ohzu H., Hybrid holographic microscopy free of conjugate and zero-order images, Appl. Opt., 38, pp. 4990-4996, (1999)
  • [16] Takaki Y., Ohzu H., Hybrid Holographic Microscopy: Visualization of Three-Dimensional Object Information by use of Viewing Angles, Appl. Opt., 39, pp. 5302-5308, (2000)
  • [17] Nehmetallah G., Banerjee P.P., Applications of digital and analog holography in three-dimensional imaging, Adv. Opt. Photon., 4, pp. 472-553, (2012)
  • [18] Wada A., Kato M., Ishii Y., Large step-height measurements using multiple-wavelength holographic interferometry with tunable laser diodes, J. Opt. Soc. Am. A, 25, pp. 3013-3020, (2008)
  • [19] Yokota M., Adachi T., Digital holographic profilometry of the inner surface of a pipe using a current-induced wavelength change of a laser diode, Appl. Opt., 50, pp. 3937-3946, (2011)
  • [20] Fajst A., Sypek M., Makowski M., Suszek J., Kolodziejczyk A., Self-imaging phase mask used in digital holography with phase-shifting, Proc. SPIE, 7141, (2008)