Microtechnologies in the fabrication of fibers for tissue engineering

被引:0
|
作者
Akbari, Mohsen [1 ,2 ,3 ,4 ]
Tamayol, Ali [1 ,2 ,3 ,4 ]
Annabi, Nasim [1 ,2 ,3 ]
Juncker, David [4 ,5 ]
Khademhosseini, Ali [1 ,2 ,3 ]
机构
[1] Biomaterials Innovation Research Center, Harvard Medical School, Brigham and Women's Hospital, Cambridge,MA,02139, United States
[2] Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge,MA,02139, United States
[3] Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge,MA,02139, United States
[4] Biomedical Engineering Department, McGill University, Montreal,H3A0G1, Canada
[5] Department of Neurology and Neurosurgery, McGill University, Montreal,H3A2B4, Canada
来源
RSC Nanoscience and Nanotechnology | 2015年 / 2015-January卷 / 36期
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1 / 18
相关论文
共 27 条
  • [11] In vitro biocompatibility of polylactide and polybutylene succinate blends for urethral tissue engineering
    Sartoneva, Reetta
    Lyyra, Inari
    Juusela, Maiju
    Sharma, Vipul
    Huhtala, Heini
    Massera, Jonathan
    Kellomäki, Minna
    Miettinen, Susanna
    Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2023, 111 (10): : 1728 - 1740
  • [12] Role of Enabling Technologies in Soft Tissue Engineering: A Systematic Literature Review
    Sood, Sandeep Kumar
    Rawat, Keshav Singh
    Sharma, Girish
    IEEE Engineering Management Review, 2022, 50 (04): : 155 - 169
  • [13] FABRICATION OF SINGLE-MODE FIBERS FOR 1. 5 mu m WAVELENGTH REGION.
    Miya, Tetsuo
    Kawana, Akio
    Terunuma, Yukio
    Hosaka, Toshihito
    Transactions of the Institute of Electronics and Communication Engineers of Japan. Section E, 1980, E63 (07): : 514 - 519
  • [14] The beam source of the MITICA experiment: Strategy adopted, manufacturing design, engineering and fabrication of the main components
    Masiello, A.
    Ballester, R. Moron
    Bailly-Maitre, L.
    Readman, P.
    Geli, F.
    Marcuzzi, D.
    FUSION ENGINEERING AND DESIGN, 2023, 193
  • [15] Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering
    Rodrigues, C.V.M.
    Serricella, P.
    Linhares, A.B.R.
    Guerdes, R.M.
    Borojevic, R.
    Rossi, M.A.
    Duarte, M.E.L.
    Farina, M.
    Biomaterials, 1600, 27 (4987-4997):
  • [16] Real-time prediction of structural and optical properties of hollow-core photonic bandgap fibers during fabrication
    Fokoua, Eric Numkam
    Petrovich, Marco N.
    Baddela, Naveen K.
    Wheeler, Natalie V.
    Hayes, John R.
    Poletti, Francesco
    Richardson, David J.
    OPTICS LETTERS, 2013, 38 (09) : 1382 - 1384
  • [17] Fabrication of sizing agent containing multi-walled carbon nanotubes and effect on carbon fibers/epoxy resin composite interface
    Li, Na
    Wang, Zhiping
    Liu, Gang
    Zhang, Xingxiang
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2015, 31 (03): : 147 - 152
  • [18] Physically cross-linked chitosan gel with tunable mechanics and biodegradability for tissue engineering scaffold
    Pan, Peng
    Wang, Jian
    Wang, Xi
    Kang, Ye
    Yu, Xinding
    Chen, Tiantian
    Hao, Yulin
    Liu, Wentao
    International Journal of Biological Macromolecules, 2024, 257
  • [19] Electrospun poly(vinyl alcohol)/reduced graphene oxide nanofibrous scaffolds for skin tissue engineering
    Narayanan, Kannan Badri
    Park, Gyu Tae
    Han, Sung Soo
    Colloids and Surfaces B: Biointerfaces, 2020, 191
  • [20] Additive Manufacturing of Biopolymers for Tissue Engineering and Regenerative Medicine: An Overview, Potential Applications, Advancements, and Trends
    Veeman, Dhinakaran
    Sai, M. Swapna
    Sureshkumar, P.
    Jagadeesha, T.
    Natrayan, L.
    Ravichandran, M.
    Mammo, Wubishet Degife
    International Journal of Polymer Science, 2021, 2021