Intelligent Marketing in Smart Cities Crowdsourced Data for Geo-Conquesting

被引:23
作者
Chen, Bo-Wei [1 ]
Ji, Wen [2 ]
机构
[1] Monash Univ, Sch Informat Technol, Clayton, Vic, Australia
[2] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
关键词
computational advertising; crowd flow; crowdsourcing; distributed analysis; distributed systems; geo-conquesting; mobile; pervasive computing; trails; transition flow;
D O I
10.1109/MITP.2016.64
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The authors' approach for intelligent marketing in smart cities uses large-scale crowdsourcing based on mobile user behavior for market planning. The approach tracks user trails via mobile devices to help marketers analyze crowd flows for geo-conquesting.
引用
收藏
页码:18 / 24
页数:7
相关论文
共 9 条
[1]  
Ali S, 2007, PROC CVPR IEEE, P65
[2]  
[Anonymous], 2014, Kernel Methods and Machine Learning
[3]  
[Anonymous], WALL STREET J
[4]  
[Anonymous], CVPR
[5]   Geo-Conquesting: Competitive Locational Targeting of Mobile Promotions [J].
Fong, Nathan M. ;
Fang, Zheng ;
Luo, Xueming .
JOURNAL OF MARKETING RESEARCH, 2015, 52 (05) :726-735
[6]  
Han J, 2012, MOR KAUF D, P1
[7]  
Pei J, 2001, PROC INT CONF DATA, P215
[8]  
Srivastava S., 2011, Proceedings of the 2011 8th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS 2011), P60, DOI 10.1109/AVSS.2011.6027295
[9]   Crowdsourced Trace Similarity with Smartphones [J].
Zeinalipour-Yazti, Demetrios ;
Laoudias, Christos ;
Costa, Constandinos ;
Vlachos, Michail ;
Andreou, Maria I. ;
Gunopulos, Dimitrios .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2013, 25 (06) :1240-1253