Preparation of N-doped carbon material derived from porous organic polymer as an active center to growth nickel cobalt phosphide for high-performance supercapacitors

被引:1
|
作者
Narimisa, Sh. [1 ]
Mouradzadegun, A. [1 ,2 ]
Zargar, B. [1 ]
Ganjali, M. R. [3 ,4 ]
机构
[1] Shahid Chamran Univ Ahvaz, Fac Sci, Dept Chem, Ahvaz 6135743311, Iran
[2] Univ Tehran, Coll Sci, Sch Chem, Tehran 1417614411, Iran
[3] Univ Tehran, Coll Sci, Ctr Excellence Electrochem, Sch Chem, Tehran 111554563, Iran
[4] Univ Tehran Med Sci, Endocrinol & Metab Mol Cellular Sci Inst, Biosensor Res Ctr, Tehran 111554563, Iran
关键词
N-doped porous carbon materials; Calix[4]resorcinarene; Ni1Co2P@N-C-800; Supercapacitor; Energy storage; LAYERED DOUBLE HYDROXIDE; NANOSHEETS; ELECTRODE; ARRAYS;
D O I
10.1016/j.est.2024.114340
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, nitrogen-doped porous carbon materials derived from Azo-bridged calix[4]resorcinarene porous organic polymer were synthesized via pyrolysis at various temperatures. Notably, this work represents the first successful fabrication of nitrogen-doped carbon materials utilizing the Azo group (N=N) as a nitrogen source. This novel approach introduces diverse nitrogen configurations into the carbon matrix, crucial for enhancing material properties. Among the synthesized materials, nitrogen-doped carbon derived at 800 degrees C (N-C-800) exhibited exceptional characteristics including a high content of graphitic nitrogen, substantial specific surface area, hierarchical porous structure, and favorable conductivity, rendering it suitable for supercapacitor applications. N-C-800 demonstrated a remarkable specific capacity of 340 F g- 1 . Furthermore, the presence of pyridinic-nitrogen functionalities in N-C-800 facilitated the anchoring of nickel cobalt phosphide nanowires, fostering a strong interaction between nitrogen and the metal. The resulting composite, Ni1Co2P@N-C-800, served as a positive electrode and showcased superior specific capacity of 1275 F g- 1 with an impressive capacitance retention of 87 % over 1000 cycles at 1 A g- 1 . Additionally, an asymmetric supercapacitor configuration, Ni1Co2P@N-C-800//N-C-800, utilizing both N-C-800 and Ni1Co2P@N-C-800 electrodes, was simulated, delivering an energy density of 50.44 Wh kg-1 at a power density of 799 W kg-1 . This work underscores the potential of facile synthesis routes for generating novel electrode materials with enhanced electrochemical efficiency, offering promising avenues for advanced energy storage applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] N-Doped Hierarchical Porous Carbon with Open-Ended Structure for High-Performance Supercapacitors
    Cao, Shubo
    Qu, Ting
    Zhang, Ang
    Zhao, Yongbin
    Chen, Aihua
    CHEMELECTROCHEM, 2019, 6 (06) : 1696 - 1703
  • [32] B, N co-doped porous carbon derived from β-cyclodextrin for high-performance supercapacitors
    Yang, Meiyu
    Nie, Zhiguo
    Wang, Rui
    Zhao, Yang
    Wang, Huan
    JOURNAL OF ENERGY STORAGE, 2024, 99
  • [33] N-doped porous carbon derived from different lignocellulosic biomass models for high-performance supercapacitors: the role of lignin, cellulose and hemicellulose
    Teng, Zhaocai
    Han, Kuihua
    Cao, Yang
    Qi, Jianhui
    Wang, Meimei
    Liu, Jiangwei
    Li, Yingjie
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 289
  • [34] Polybenzoxazine originated N-doped mesoporous carbon ropes as an electrode material for high-performance supercapacitors
    Thirukumaran, Periyasamy
    Atchudan, Raji
    Parveen, Asrafali Shakila
    Lee, Yong Rok
    Kim, Seong-Cheol
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 750 : 384 - 391
  • [35] A Coconut Leaf Sheath Derived Graphitized N-Doped Carbon Network for High-Performance Supercapacitors
    Jayakumar, Anjali
    Zhao, Jun
    Lee, Jong-Min
    CHEMELECTROCHEM, 2018, 5 (02): : 284 - 291
  • [36] Hierarchical porous multi-element doped carbon material derived from abutilon for High-performance supercapacitors
    Wang, Lulu
    Li, Xuejian
    Huang, Xing
    Wang, Yunyun
    Jiang, Jibo
    Han, Sheng
    VACUUM, 2022, 198
  • [37] Core–shell N-doped carbon spheres for high-performance supercapacitors
    Yinling Wang
    Shengye Dong
    Xiaoqin Wu
    Xiaowang Liu
    Maoguo Li
    Journal of Materials Science, 2017, 52 : 9673 - 9682
  • [38] N-doped hierarchically porous carbon from lignite-derived residue for high-performance supercapacitor
    Zhao, Mei-Xia
    Meng, Bo
    Zheng, Juan-Juan
    Yang, Ning
    Liu, Fang-Jing
    DIAMOND AND RELATED MATERIALS, 2025, 151
  • [39] N-doped Porous Carbon Derived from Bamboo Fiber as a High-performance Adsorbent for Methylene Blue
    Xiang, Hongzhong
    Feng, Zixing
    Yang, Jianfei
    Liang, Fang
    Zhang, Tao
    Hu, Wanhe
    Mi, Bingbing
    Yang, Xiaomeng
    Liu, Zhijia
    BIORESOURCES, 2019, 14 (04): : 8765 - 8784
  • [40] Preparation of Fe/N Co-Doped Hierarchical Porous Carbon Nanosheets Derived From Chitosan Nanofibers for High-Performance Supercapacitors
    Yang, Yaqi
    Shao, Ziqiang
    Wang, Feijun
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2022, 19 (02)