Fate, distribution, and transport dynamics of Per- and Polyfluoroalkyl Substances (PFASs) in the environment

被引:2
|
作者
Alam, Md Shahin [1 ]
Abbasi, Alireza [1 ]
Chen, Gang [1 ]
机构
[1] Florida State Univ, Dept Civil & Environm Engn, Tallahassee, FL 32310 USA
关键词
PFAS Chemistry; Fate and Transport; Vadose Zone Transport; Surface Water Transport; Atmospheric Transport; PERFLUOROALKYL SUBSTANCES; ADSORPTION; RETENTION; REMOVAL; PLANTS; WATER; PFOA; SAND;
D O I
10.1016/j.jenvman.2024.123163
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Per- and Polyfluoroalkyl Substances (PFASs) are persistent organic pollutants with significant environmental and health impacts due to their widespread occurrence, bioaccumulation potential, and resistance to degradation. This paper comprehensively reviews current knowledge of PFAS fate and transport mechanisms by correlating PFAS leaching, retention, and movement to their physicochemical properties and environmental factors based on observing PFAS fate and transport in unsaturated zones, surface water, sediments, plants, and atmosphere. The complex and unique physiochemical properties of PFASs, such as their carbon-fluorine bonds and amphiphilic nature, determine their environmental behavior and persistence. Recent studies emphasize that concentrationdependent affinity coefficients predict the transport of diverse PFAS mixtures by considering the impact of the Air-Water Interface (AWI). These studies highlight the complex interactions that influence PFAS behavior in environmental systems and the need for refined modeling techniques to account for transport dynamics. Competitive adsorption at the AWI, influenced by PFAS physicochemical properties and environmental factors, is crucial. PFAS chain length profoundly affects PFAS volatility and mobility, i.e., longer chains show higher solid matrix adsorption, while shorter chains exhibit greater atmospheric deposition potential. Solution chemistry, encompassing pH and ionic strength, variably alters PFAS sorption behaviors. Mathematical models, such as the Leverett Thermodynamic Model (LTM) and Surface Roughness Multipliers (SRM), effectively predict PFAS retention, offering enhanced accuracy for surface-active solutes through empirical adjustments. Co-contaminants' presence influences the transport behavior of PFASs in the environment. Microbial activity alters PFAS retention, while microplastics, especially polyamide, contribute to their adsorption. These complex interactions govern PFAS fate and transport in the environment. The paper identifies critical gaps in current understanding, including the fate of PFASs, analytical challenges, ecological risk assessment methods, and the influence of episodic events on PFAS transport dynamics. This paper also investigates the research gap in refining current models and experimental approaches to predict PFAS transport accurately and enhance risk mitigation efforts. Addressing these gaps is crucial for advancing remediation strategies and regulatory frameworks to mitigate PFAS contamination effectively.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] A critical review of the occurrence, fate and treatment of per- and polyfluoroalkyl substances (PFASs) in landfills
    Li, Jia
    Xi, Beidou
    Zhu, Ganghui
    Yuan, Ying
    Liu, Weijiang
    Gong, Yi
    Tan, Wenbing
    ENVIRONMENTAL RESEARCH, 2023, 218
  • [2] Sorption behaviour of per- and polyfluoroalkyl substances (PFASs) in tropical soils
    Oliver, Danielle P.
    Li, Yasong
    Orr, Ryan
    Nelson, Paul
    Barnes, Mary
    McLaughlin, Michael J.
    Kookana, Rai S.
    ENVIRONMENTAL POLLUTION, 2020, 258 (258)
  • [3] Sulfluramid use in Brazilian agriculture: A source of per- and polyfluoroalkyl substances (PFASs) to the environment
    Nascimento, Rodrigo A.
    Nunoo, Deborah B. O.
    Bizkarguenaga, Ekhine
    Schultes, Lara
    Zabaleta, Itsaso
    Benskin, Jonathan P.
    Spano, Saulo
    Leonel, Juliana
    ENVIRONMENTAL POLLUTION, 2018, 242 : 1436 - 1443
  • [4] Molecular dynamics simulation of the adsorption of per- and polyfluoroalkyl substances (PFASs) on smectite clay
    Willemsen, Jennifer A. R.
    Bourg, Ian C.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 585 : 337 - 346
  • [5] Sorption behaviour of per- and polyfluoroalkyl substances (PFASs) as affected by the properties of coastal estuarine sediments
    Oliver, Danielle P.
    Navarro, Divina A.
    Baldock, Jeff
    Simpson, Stuart L.
    Kookana, Rai S.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 720
  • [6] Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in Australian biosolids
    Moodie, Damien
    Coggan, Timothy
    Berry, Kathryn
    Kolobaric, Adam
    Fernandes, Milena
    Lee, Elliot
    Reichman, Suzie
    Nugegoda, Dayanthi
    Clarke, Bradley O.
    CHEMOSPHERE, 2021, 270
  • [7] Per- and polyfluoroalkyl substances (PFASs) in consumable species and food products
    Torres, Fernando G.
    De-la-Torre, Gabriel E.
    JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE, 2023, 60 (09): : 2319 - 2336
  • [8] Per- and polyfluoroalkyl substances in the environment
    Evich, Marina G.
    Davis, Mary J. B.
    McCord, James P.
    Acrey, Brad
    Awkerman, Jill A.
    Knappe, Detlef R. U.
    Lindstrom, Andrew B.
    Speth, Thomas F.
    Tebes-Stevens, Caroline
    Strynar, Mark J.
    Wang, Zhanyun
    Weber, Eric J.
    Henderson, W. Matthew
    Washington, John W.
    SCIENCE, 2022, 375 (6580) : 512 - +
  • [9] Tracing per- and polyfluoroalkyl substances (PFASs) in the aquatic environment: Target analysis and beyond
    Wang, Qi
    Ruan, Yuefei
    Yuen, Calista N. T.
    Lin, Huiju
    Yeung, Leo W. Y.
    Leung, Kenneth M. Y.
    Lam, Paul K. S.
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2023, 169
  • [10] Distribution of Per- and Polyfluoroalkyl Substances (PFASs) in Lower Reach of Yellow River, China
    Lü M.
    Zhu Y.
    Pan B.
    Xu N.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58 (03): : 575 - 586