Degradation-Trend-Aware Deep Neural Network with Attention Mechanism for Bearing Remaining Useful Life Prediction

被引:5
|
作者
Liu Y. [1 ]
Pan D. [1 ]
Zhang H. [1 ]
Zhong K. [2 ]
机构
[1] Anhui University, Key Laboratory of Intelligent Computing and Signal Processing of the Ministry of Education, School of Mathematical Sciences, Hefei
[2] Anhui University, Key Laboratory of Intelligent Computing and Signal Processing of the Ministry of Education, Institutes of Physical Science and Information Technology, Hefei
来源
IEEE Transactions on Artificial Intelligence | 2024年 / 5卷 / 06期
基金
中国国家自然科学基金;
关键词
Attention mechanism; bearings; deep learning; degradation trend; interpretability; remaining useful life;
D O I
10.1109/TAI.2023.3333767
中图分类号
学科分类号
摘要
Remaining useful life (RUL) prediction of bearings has extraordinary significance for prognostics and health management (PHM) of rotating machinery. RUL prediction approaches based on deep learning have been dedicated to finding a nonlinear mapping relationship between nonstationary monitoring data and RUL. However, most existing approaches pay little attention to the degradation trend of diverse health stages of bearing and lack the discriminative power of crucial degradation features, resulting in the loss of some important information associated with RUL. To address this challenge, this article proposes a novel RUL prediction framework based on degradation-trend-aware deep neural network with attention mechanism (DTADAN). First the multidirection features with evident degradation trend are extracted via the analysis of bearing vibration signal from both time-domain and time-frequency domain. Next, the deep neural network architecture with attention mechanism is utilized to adaptively learn the critical degradation features beneficial for RUL prediction. Distinct from the existing approaches, the proposed framework is able to dynamically extract key degradation features of the bearing including degradation trend information and effectively fuse multidirection information to improve RUL prediction accuracy. The performance of the proposed approach is evaluated via case studies on XJTU-SY bearing dataset and PRONOSTIA bearing dataset. Compared with other state-of-the-art approaches, the proposed framework has better predictive accuracy and robustness. Additionally, interpretable analysis is provided to reveal the process of model learning and data characteristics, and the analysis results are helpful in guiding model learning. © 2020 IEEE.
引用
收藏
页码:2997 / 3011
页数:14
相关论文
共 50 条
  • [1] Prediction of Bearing Remaining Useful Life With Deep Convolution Neural Network
    Ren, Lei
    Sun, Yaqiang
    Wang, Hao
    Zhang, Lin
    IEEE ACCESS, 2018, 6 : 13041 - 13049
  • [2] Temporal Convolutional Network with Attention Mechanism for Bearing Remaining Useful Life Prediction
    Wang, Shuai
    Zhang, Chao
    Lv, Da
    Zhao, Wentao
    PROCEEDINGS OF TEPEN 2022, 2023, 129 : 391 - 400
  • [3] A novel deep learning method based on attention mechanism for bearing remaining useful life prediction
    Chen, Yuanhang
    Peng, Gaoliang
    Zhu, Zhiyu
    Li, Sijue
    APPLIED SOFT COMPUTING, 2020, 86
  • [4] A deep attention residual neural network-based remaining useful life prediction of machinery
    Zeng, Fuchuan
    Li, Yiming
    Jiang, Yuhang
    Song, Guiqiu
    MEASUREMENT, 2021, 181
  • [5] Deep multiscale feature fusion network with dual attention for rolling bearing remaining useful life prediction
    Yingming Yang
    Zhihai Wang
    Xiaoqin Liu
    Tao Liu
    Zhuopeng Luo
    Scientific Reports, 15 (1)
  • [6] Bearing remaining useful life prediction based on deep autoencoder and deep neural networks
    Ren, Lei
    Sun, Yaqiang
    Cui, Jin
    Zhang, Lin
    JOURNAL OF MANUFACTURING SYSTEMS, 2018, 48 : 71 - 77
  • [7] New trend in enhancing bearing remaining useful life prediction
    Boukra, T.
    Lebaroud, A.
    JOURNAL OF NEW TECHNOLOGY AND MATERIALS, 2019, 8 (03) : 20 - 24
  • [8] Deep Recurrent Convolutional Neural Network for Remaining Useful Life Prediction
    Ma, Meng
    Mao, Zhu
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [9] Remaining Useful Life Prediction of Bearing Based on Deep Perceptron Neural Networks
    Hong, Sheng
    Yin, Jiawei
    BDIOT 2018: PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON BIG DATA AND INTERNET OF THINGS, 2018, : 175 - 179
  • [10] A remaining useful life prediction method for bearing based on deep neural networks
    Ding, Hua
    Yang, Liangliang
    Cheng, Zeyin
    Yang, Zhaojian
    MEASUREMENT, 2021, 172