Full-field amplitude speckle decorrelation angiography

被引:0
作者
Mansutti, Giulia [1 ]
Villiger, Martin [1 ]
Bouma, Brett E. [1 ,2 ]
Uribe-Patarroyo, Nestor [1 ]
机构
[1] Massachusetts Gen Hosp, Wellman Ctr Photomed, Boston, MA 02114 USA
[2] MIT, Inst Med Engn & Sci, Cambridge, MA USA
来源
BIOMEDICAL OPTICS EXPRESS | 2024年 / 15卷 / 10期
基金
美国国家卫生研究院;
关键词
OPTICAL COHERENCE TOMOGRAPHY; IN-VIVO; SKIN; MICROVASCULATURE; DOPPLER;
D O I
10.1364/BOE.530993
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We propose a new simple and cost-effective optical imaging technique, full-field amplitude speckle decor relation angiography (FASDA), capable of visualizing skin microvasculature with high resolution, and sensitive to small, superficial vessels with slow blood flow and larger, deeper vessels with faster blood flow. FASDA makes use of a laser source with limited temporal coherence, can be implemented with cameras with conventional frame rates, and does not require raster scanning. The proposed imaging technique is based on the simultaneous evaluation of two metrics: the blood flow index, a contrast-based metric used in laser speckle contrast imaging, and the adaptive speckle decor relation index (ASDI), a new metric that we defined based on the second-order autocor relation function that considers the limited speckle modulation that occurs in partially-coherent imaging. We demonstrate excellent delineation of small, superficial vessels with slow blood flow in skin nevi using ASDI and larger, deeper vessels with faster blood flow using BFI, providing a powerful new tool for the imaging of microvasculature with significantly lower hardware complexity and cost than other optical imaging techniques. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:5756 / 5772
页数:17
相关论文
共 52 条
[1]   Nail Folds Capillaries Abnormalities Associated With Type 2 Diabetes Mellitus Progression and Correlation With Diabetic Retinopathy [J].
Abd EL-Khalik, Dina M. ;
Hafez, Eman A. ;
Hassan, Hanan E. ;
Mahmoud, Asmaa E. ;
Ashour, Doaa Maamoun ;
Morshedy, Nashwa A. .
CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES, 2022, 15
[2]   Insight in Human Skin Microcirculation Using In Vivo Reflectance-Mode Confocal Laser Scanning Microscopy [J].
Altintas, Mehmet Ali ;
Altintas, A. A. ;
Guggenheim, M. ;
Steiert, A. E. ;
Aust, M. C. ;
Niederbichler, A. D. ;
Herold, C. ;
Vogt, P. M. .
JOURNAL OF DIGITAL IMAGING, 2010, 23 (04) :475-481
[3]  
[Anonymous], 1964, World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects
[4]   Laser speckle contrast imaging in biomedical optics [J].
Boas, David A. ;
Dunn, Andrew K. .
JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (01)
[5]  
Braaf B., 2019, High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics, P135
[6]   A Neural Network Approach to Quantify Blood Flow from Retinal OCT Intensity Time-Series Measurements [J].
Braaf, Boy ;
Donner, Sabine ;
Uribe-Patarroyo, Nestor ;
Bouma, Brett E. ;
Vakoc, Benjamin J. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[8]   Hanbury Brown and Twiss interferometry with interacting photons [J].
Bromberg, Y. ;
Lahini, Y. ;
Small, E. ;
Silberberg, Y. .
NATURE PHOTONICS, 2010, 4 (10) :721-726
[9]   Imaging of the skin microvascularization using spatially depolarized dynamic speckle [J].
Colin, Elise ;
Plyer, Aurelien ;
Golzio, Muriel ;
Meyer, Nicolas ;
Favre, Gilles ;
Orlik, Xavier .
JOURNAL OF BIOMEDICAL OPTICS, 2022, 27 (04)
[10]  
Crawford M., Black silicon