Pursuing high-fidelity control of spin qubits in natural Si/SiGe quantum dot

被引:0
作者
Wang, Ning [1 ,2 ]
Wang, Shao-Min [1 ,2 ]
Zhang, Run-Ze [1 ,2 ]
Kang, Jia-Min [1 ,2 ]
Lu, Wen-Long [1 ,2 ]
Li, Hai-Ou [1 ,2 ,3 ]
Cao, Gang [1 ,2 ,3 ]
Wang, Bao-Chuan [1 ,2 ]
Guo, Guo-Ping [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
[4] Origin Quantum Comp Co Ltd, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
COHERENCE; THRESHOLD; GATE;
D O I
10.1063/5.0230605
中图分类号
O59 [应用物理学];
学科分类号
摘要
Electron spins in silicon quantum dots are a promising platform for fault-tolerant quantum computing. Low-frequency noise, including nuclear spin fluctuations and charge noise, is a primary factor limiting gate fidelities. Suppressing this noise is crucial for high-fidelity qubit operations. Here, we report on a two-qubit quantum device in natural silicon with universal qubit control, designed to investigate the upper limits of gate fidelities in a non-purified Si/SiGe quantum dot device. By employing advanced device structures, qubit manipulation techniques, and optimization methods, we have achieved single-qubit gate fidelities exceeding 99% and a two-qubit controlled-Z (CZ) gate fidelity of 91%. Decoupled CZ gates are used to prepare Bell states with an average fidelity of 91%, typically exceeding previously reported values in natural silicon devices. These results underscore that even natural silicon has the potential to achieve high-fidelity gate operations, particularly with further optimization methods to suppress low-frequency noise.
引用
收藏
页数:6
相关论文
共 48 条
[1]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[2]   Robust two-qubit gates using pulsed dynamical decoupling [J].
Barthel, Patrick ;
Huber, Patrick H. ;
Casanova, Jorge ;
Arrazola, Inigo ;
Niroomand, Dorna ;
Sriarunothai, Theeraphot ;
Plenio, Martin B. ;
Wunderlich, Christof .
NEW JOURNAL OF PHYSICS, 2023, 25 (06)
[3]   Rapid High-Fidelity Spin-State Readout in Si/Si-Ge Quantum Dots via rf Reflectometry [J].
Connors, Elliot J. ;
Nelson, J. J. ;
Nichol, John M. .
PHYSICAL REVIEW APPLIED, 2020, 13 (02)
[4]   Low-frequency charge noise in Si/SiGe quantum dots [J].
Connors, Elliot J. ;
Nelson, J. J. ;
Qiao, Haifeng ;
Edge, Lisa F. ;
Nichol, John M. .
PHYSICAL REVIEW B, 2019, 100 (16)
[5]  
De Smet M, 2024, Arxiv, DOI arXiv:2406.07267
[6]   Low dephasing and robust micromagnet designs for silicon spin qubits [J].
Dumoulin Stuyck, N., I ;
Mohiyaddin, F. A. ;
Li, R. ;
Heyns, M. ;
Govoreanu, B. ;
Radu, I. P. .
APPLIED PHYSICS LETTERS, 2021, 119 (09)
[7]   Surface codes: Towards practical large-scale quantum computation [J].
Fowler, Austin G. ;
Mariantoni, Matteo ;
Martinis, John M. ;
Cleland, Andrew N. .
PHYSICAL REVIEW A, 2012, 86 (03)
[8]   Randomized Benchmarking of Multiqubit Gates [J].
Gaebler, J. P. ;
Meier, A. M. ;
Tan, T. R. ;
Bowler, R. ;
Lin, Y. ;
Hanneke, D. ;
Jost, J. D. ;
Home, J. P. ;
Knill, E. ;
Leibfried, D. ;
Wineland, D. J. .
PHYSICAL REVIEW LETTERS, 2012, 108 (26)
[9]   Scaling silicon-based quantum computing using CMOS technology [J].
Gonzalez-Zalba, M. F. ;
de Franceschi, S. ;
Charbon, E. ;
Meunier, T. ;
Vinets, M. ;
Dzurak, A. S. .
NATURE ELECTRONICS, 2021, 4 (12) :872-884
[10]   Crosstalk analysis for single-qubit and two-qubit gates in spin qubit arrays [J].
Heinz, Irina ;
Burkard, Guido .
PHYSICAL REVIEW B, 2021, 104 (04)