Ultralow thermal conductivity in Si-Ge nanograin mixtures: A cost-effective granular material for thermoelectric applications

被引:1
作者
Barakat, Nourhan [1 ,2 ]
Akkoush, A. [1 ]
Hassan, Fouad El Haj [2 ,3 ]
Kazan, Michel [1 ,4 ]
机构
[1] Amer Univ Beirut, Dept Phys, POB 11-0236, Beirut 11072020, Lebanon
[2] Lebanese Univ, Platform Res & Anal Environm Sci PRASE DSST, Campus Rafic Hariri, Beirut, Lebanon
[3] Al Maaref Univ, Basic & Appl Sci Res Ctr, Airport Ave, Beirut, Lebanon
[4] Univ Technol Troyes, Light Nanomat & Nanotechnol, CNRS ERL 7004, F-10000 Troyes, France
关键词
PERFORMANCE; ENHANCEMENT; SCATTERING; TRANSPORT; PHONONS; MODEL; HEAT;
D O I
10.1063/5.0231790
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper presents a theoretical study of the thermal conductivity of Si-Ge nanograin mixtures using a multiscale computational methodology based on solving the Boltzmann transport equation for phonons with first-principles techniques. A size-dependent correction factor is developed to account for the spatial dependence of the phonon distribution function on nanograin size, with parameters derived from the phonon properties of infinite Si and Ge crystals. This approach makes it possible to accurately calculate the thermal conductivity within a single nanograin, using force constants obtained from first-principles calculations. Thermal energy transport by phonons across grain boundaries is modeled by accounting for phonon transmission by two-phonon processes, weighting specular, and diffuse transmission for each phonon mode as a function of the root-mean-square roughness of the boundary relative to the phonon wavelength. The boundary thermal conductance model, previously validated against experimental data, is implemented using first-principles techniques. This approach excludes specular transmission for phonon modes with specific symmetries while ensuring conservation of the total number of modes in each symmetry class. The study examines the influence of grain size, nanograin mixture composition, temperature, and boundary asperities on the thermal conductivity of nanograin mixtures. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
引用
收藏
页数:10
相关论文
共 44 条
[1]  
Auld B.A., 1973, ACOUSTIC FIELDS WAVE
[2]   Revealing Low Thermal Conductivity of Germanium Tin Semiconductor at Room Temperature [J].
Ayinde, Sabur ;
Myronov, Maksym .
ADVANCED MATERIALS INTERFACES, 2024, 11 (02)
[3]   Modification of the Acoustic Mismatch Model and Diffuse Mismatch Model for Accurate Prediction of Interface Thermal Conductance at Low Temperatures [J].
Barakat, Nourhan ;
Hassan, Fouad El Haj ;
Kazan, Michel .
ASME JOURNAL OF HEAT AND MASS TRANSFER, 2024, 146 (04)
[4]   Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys [J].
Basu, Ranita ;
Bhattacharya, Shovit ;
Bhatt, Ranu ;
Roy, Mainak ;
Ahmad, Sajid ;
Singh, Ajay ;
Navaneethan, M. ;
Hayakawa, Y. ;
Aswal, D. K. ;
Gupta, S. K. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (19) :6922-6930
[5]   Progress of hybrid nanocomposite materials for thermoelectric applications [J].
Bisht, Neha ;
More, Priyesh ;
Khanna, Pawan Kumar ;
Abolhassani, Reza ;
Mishra, Yogendra Kumar ;
Madsen, Morten .
MATERIALS ADVANCES, 2021, 2 (06) :1927-1956
[6]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[7]   Intrinsic lattice thermal conductivity of semiconductors from first principles [J].
Broido, D. A. ;
Malorny, M. ;
Birner, G. ;
Mingo, Natalio ;
Stewart, D. A. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[8]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[9]   almaBTE: A solver of the space-time dependent Boltzmann transport equation for phonons in structured materials [J].
Carrete, Jesus ;
Vermeersch, Bjorn ;
Katre, Ankita ;
van Roekeghem, Ambroise ;
Wang, Tao ;
Madsen, Georg K. H. ;
Mingo, Natalio .
COMPUTER PHYSICS COMMUNICATIONS, 2017, 220 :351-362
[10]   Thermal conductivity and heat transfer in superlattices [J].
Chen, G ;
Neagu, M .
APPLIED PHYSICS LETTERS, 1997, 71 (19) :2761-2763