A Physics-Informed Neural Operator for the Simulation of Surface Waves

被引:1
作者
Mathias, Marlon S. [1 ]
Netto, Caio F. D. [1 ]
Moreno, Felipe M. [1 ]
Coelho, Jefferson F. [1 ]
de Freitas, Lucas P. [1 ]
de Barros, Marcel R. [1 ]
de Mello, Pedro C. [1 ]
Dottori, Marcelo [1 ]
Cozman, Fabio G. [1 ]
Costa, Anna H. R. [1 ]
Nogueira Junior, Alberto C. [1 ]
Gomi, Edson S. [1 ]
Tannuri, Eduardo A. [1 ]
机构
[1] Univ Sao Paulo, Escola Politecn, BR-05508080 Sao Paulo, Brazil
来源
JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME | 2024年 / 146卷 / 06期
基金
巴西圣保罗研究基金会;
关键词
neural networks; machine learning; computational fluid dynamics; wave modeling; NETWORKS;
D O I
10.1115/1.4064676
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
We develop and implement a neural operator (NOp) to predict the evolution of waves on the surface of water. The NOp uses a graph neural network (GNN) to connect randomly sampled points on the water surface and exchange information between them to make the prediction. Our main contribution is adding physical knowledge to the implementation, which allows the model to be more general and able to be used in domains of different geometries with no retraining. Our implementation also takes advantage of the fact that the governing equations are independent of rotation and translation to make training easier. In this work, the model is trained with data from a single domain with fixed dimensions and evaluated in domains of different dimensions with little impact to performance.
引用
收藏
页数:10
相关论文
共 14 条
[1]   Physics-informed dynamic mode decomposition [J].
Baddoo, Peter J. J. ;
Herrmann, Benjamin ;
McKeon, BeverleyJ. J. ;
Kutz, J. Nathan ;
Brunton, Steven L. L. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2271)
[2]  
Biewald L., 2020, Experiment tracking with weights and biases
[3]   Wave focalization in a wave tank by using time reversal technique [J].
de Mello, P. C. ;
Perez, N. ;
Adamowski, J. C. ;
Nishimoto, K. .
OCEAN ENGINEERING, 2016, 123 :314-326
[4]  
Gilmer J, 2017, PR MACH LEARN RES, V70
[5]   Physics-informed machine learning [J].
Karniadakis, George Em ;
Kevrekidis, Ioannis G. ;
Lu, Lu ;
Perdikaris, Paris ;
Wang, Sifan ;
Yang, Liu .
NATURE REVIEWS PHYSICS, 2021, 3 (06) :422-440
[6]  
Kovachki N, 2023, J MACH LEARN RES, V24
[7]  
Li Z., 2021, INT C LEARN REPR VIE
[8]  
Li ZY, 2020, Arxiv, DOI arXiv:2003.03485
[9]   Enhancing the Forecast of Ocean Physical Variables through Physics Informed Machine Learning in the Santos Estuary, Brazil [J].
Moreno, Felipe M. ;
Schiaveto Neto, Luiz A. ;
Cozman, Fabio G. ;
Dottori, Marcelo ;
Tannuri, Eduardo A. .
OCEANS 2022, 2022,
[10]   Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations [J].
Raissi, M. ;
Perdikaris, P. ;
Karniadakis, G. E. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 378 :686-707